

Ref: GS-7181731 Your ref: 21829KJD10208 Grid ref: 470590 288909

1 Past land use

1.1 Historical industrial land uses

Records within 500m

Potentially contaminative land use features digitised from historical Ordnance Survey mapping at 1:10,000 and 1:10,560 scale, intelligently grouped into contiguous features. To prevent misrepresentation of the size of historical features at any given time, features are only grouped if they have similar geometries within immediately preceding or succeeding map editions. See section 2 for a breakdown of grouping if required. Grouped and the original un-grouped features can be cross-referenced across sections 1 and 2 using the 'Group ID'.

Features are displayed on the Past land use map on page 12

ID	Location	Land use	Dates present	Group ID
1	On site	Airfield	1974	1796999

ID	Location	Land use	Dates present	Group ID
Α	On site	Airfield	1950 - 1957	1848730
Α	On site	Airfield	1968 - 1983	1849029
2	271m SE	Unspecified Ground Workings	1968 - 1974	1817021
5	341m SE	Unspecified Ground Workings	1968 - 1974	1837994
6	380m SE	Unspecified Heap	1968 - 1974	1814867
7	414m W	Unspecified Works	1990	1771342

This data is sourced from Ordnance Survey / Groundsure.

1.2 Historical tanks

Records within 500m		3

Tank features digitised from historical Ordnance Survey mapping at high-detail 1:1,250 and 1:2,500 scale, intelligently grouped into contiguous features. To prevent misrepresentation of the size of historical features at any given time, features are only grouped if they have similar geometries within immediately preceding or succeeding map editions. See section 2 for a breakdown of grouping if required. Grouped and the original ungrouped features can be cross-referenced across sections 1 and 2 using the 'Group ID'.

Features are displayed on the Past land use map on page 12

ID	Location	Land use	Dates present	Group ID
3	315m W	Unspecified Tank	1960	283389
В	453m NW	Unspecified Tank	1960 - 1991	300768
В	471m NW	Unspecified Tank	1960	283384

This data is sourced from Ordnance Survey / Groundsure.

1.3 Historical energy features

Records within 500m

Energy features digitised from historical Ordnance Survey mapping at high-detail 1:1,250 and 1:2,500 scale,
intelligently grouped into contiguous features. To prevent misrepresentation of the size of historical features at
any given time, features are only grouped if they have similar geometries within immediately preceding or
succeeding map editions. See section 2 for a breakdown of grouping if required. Grouped and the original un-
grouped features can be cross-referenced across sections 1 and 2 using the 'Group ID'.

Features are displayed on the Past land use map on page 12

0

0

0

ID	Location	Land use	Dates present	Group ID
4	335m N	Electricity Substation	1976 - 1993	184260

This data is sourced from Ordnance Survey / Groundsure.

1.4 Historical petrol stations

Records within 500m

Petrol stations digitised from historical Ordnance Survey mapping at high-detail 1:1,250 and 1:2,500 scale, intelligently grouped into contiguous features. To prevent misrepresentation of the size of historical features at any given time, features are only grouped if they have similar geometries within immediately preceding or succeeding map editions. See section 2 for a breakdown of grouping if required. Grouped and the original ungrouped features can be cross-referenced across sections 1 and 2 using the 'Group ID'.

This data is sourced from Ordnance Survey / Groundsure.

1.5 Historical garages

Records within 500m

Garages digitised from historical Ordnance Survey mapping at high-detail 1:1,250 and 1:2,500 scale, intelligently grouped into contiguous features. To prevent misrepresentation of the size of historical features at any given time, features are only grouped if they have similar geometries within immediately preceding or succeeding map editions. See section 2 for a breakdown of grouping if required. Grouped and the original ungrouped features can be cross-referenced across sections 1 and 2 using the 'Group ID'.

This data is sourced from Ordnance Survey / Groundsure.

1.6 Historical military land

Records within 500m

Areas of military land digitised from multiple sources including the National Archives, local records, MOD records and verified other sources, intelligently grouped into contiguous features.

This data is sourced from Ordnance Survey / Groundsure / other sources.

Ref: GS-7181731 Your ref: 21829KJD10208 Grid ref: 470590 288909

2 Past land use - un-grouped

2.1 Historical industrial land uses

Records within 500m

Potentially contaminative land use features digitised from historical Ordnance Survey mapping at 1:10,000 and 10,560 scale. Any records shown are available intelligently grouped in section 1. Grouped and the original ungrouped features can be cross-referenced across sections 1 and 2 using the 'Group ID'.

Features are displayed on the Past land use - un-grouped map on page 15

ID	Location	Land Use	Date	Group ID
1	On site	Airfield	1974	1796999
А	On site	Airfield	1950	1848730
А	On site	Airfield	1957	1848730

Ref: GS-7181731 Your ref: 21829KJD10208 Grid ref: 470590 288909

ID	Location	Land Use	Date	Group ID
Α	On site	Airfield	1983	1849029
Α	On site	Airfield	1968	1849029
В	271m SE	Unspecified Ground Workings	1968	1817021
В	271m SE	Unspecified Ground Workings	1974	1817021
D	341m SE	Unspecified Ground Workings	1968	1837994
D	341m SE	Unspecified Ground Workings	1974	1837994
Е	380m SE	Unspecified Heap	1968	1814867
Е	380m SE	Unspecified Heap	1974	1814867
3	414m W	Unspecified Works	1990	1771342

This data is sourced from Ordnance Survey / Groundsure.

2.2 Historical tanks

Records within 500m

Tank features digitised from historical Ordnance Survey mapping at high-detail 1:1,250 and 1:2,500 scale. Any records shown are available intelligently grouped in section 1. Grouped and the original un-grouped features can be cross-referenced across sections 1 and 2 using the 'Group ID'.

Features are displayed on the Past land use - un-grouped map on page 15

ID	Location	Land Use	Date	Group ID
2	315m W	Unspecified Tank	1960	283389
F	453m NW	Unspecified Tank	1960	300768
F	455m NW	Unspecified Tank	1991	300768
F	471m NW	Unspecified Tank	1960	283384

This data is sourced from Ordnance Survey / Groundsure.

2.3 Historical energy features

Records within 500m

Energy features digitised from historical Ordnance Survey mapping at high-detail 1:1,250 and 1:2,500 scale. Any records shown are available intelligently grouped in section 1. Grouped and the original un-grouped features can be cross-referenced across sections 1 and 2 using the 'Group ID'.

3

Features are displayed on the Past land use - un-grouped map on page 15

ID	Location	Land Use	Date	Group ID
С	335m N	Electricity Substation	1993	184260
С	336m N	Electricity Substation	1976	184260
С	336m N	Electricity Substation	1991	184260

This data is sourced from Ordnance Survey / Groundsure.

2.4 Historical petrol stations

Records within 500m

Petrol stations digitised from historical Ordnance Survey mapping at high-detail 1:1,250 and 1:2,500 scale. Any records shown are available intelligently grouped in section 1. Grouped and the original un-grouped features can be cross-referenced across sections 1 and 2 using the 'Group ID'.

This data is sourced from Ordnance Survey / Groundsure.

2.5 Historical garages

Records within 500m

Garages digitised from historical Ordnance Survey mapping at high-detail 1:1,250 and 1:2,500 scale. Any records shown are available intelligently grouped in section 1. Grouped and the original un-grouped features can be cross-referenced across sections 1 and 2 using the 'Group ID'.

This data is sourced from Ordnance Survey / Groundsure.

0

3 Waste and landfill

3.1 Active or recent landfill

Records within 500m

Active or recently closed landfill sites under Environment Agency/Natural Resources Wales regulation.

This data is sourced from the Environment Agency and Natural Resources Wales.

3.2 Historical landfill (BGS records)

Records within 500m

Landfill sites identified on a survey carried out on behalf of the DoE in 1973. These sites may have been closed or operational at this time.

This data is sourced from the British Geological Survey.

0

3.3 Historical landfill (LA/mapping records)

Records within 500m

Landfill sites identified from Local Authority records and high detail historical mapping.

This data is sourced from the Ordnance Survey/Groundsure and Local Authority records.

3.4 Historical landfill (EA/NRW records)

Records within 500m

Known historical (closed) landfill sites (e.g. sites where there is no PPC permit or waste management licence currently in force). This includes sites that existed before the waste licensing regime and sites that have been licensed in the past but where a licence has been revoked, ceased to exist or surrendered and a certificate of completion has been issued.

This data is sourced from the Environment Agency and Natural Resources Wales.

3.5 Historical waste sites

Records within 500m

Waste site records derived from Local Authority planning records and high detail historical mapping.

This data is sourced from Ordnance Survey/Groundsure and Local Authority records.

3.6 Licensed waste sites

Records within 500m

Active or recently closed waste sites under Environment Agency/Natural Resources Wales regulation.

This data is sourced from the Environment Agency and Natural Resources Wales.

3.7 Waste exemptions

Records within 500m

Activities involving the storage, treatment, use or disposal of waste that are exempt from needing a permit. Exemptions have specific limits and conditions that must be adhered to.

Features are displayed on the Waste and landfill map on page 18

ID	Location	Site	Reference	Category	Sub-Category	Description
А	200m N	GARTREE, MARKET HARBOROUGH, LE16 7RP	WEX175923	Treating waste exemption	Not on a farm	Sorting and de-naturing of controlled drugs for disposal

0

0

0

0

ID	Location	Site	Reference	Category	Sub-Category	Description
А	200m N	GARTREE, MARKET HARBOROUGH, LE16 7RP	WEX175923	Storing waste exemption	Not on a farm	Storage of waste in a secure place
1	247m SW	THE OAKS, GUMLEY ROAD, THEDDINGWORTH, LUTTERWORTH, LE17 6QJ	WEX118254	Storing waste exemption	On a farm	Storage of sludge
В	321m W	CHAPEL FARM, FOXTON ROAD, LUBENHAM, MARKET HARBOROUGH, LE16 7RY	WEX201864	Disposing of waste exemption	On a Farm	Burning waste in the open
В	321m W	CHAPEL FARM, FOXTON ROAD, LUBENHAM, MARKET HARBOROUGH, LE16 7RY	WEX201864	Disposing of waste exemption	On a Farm	Deposit of agricultural waste consisting of plant tissue under a Plant Health notice
В	321m W	CHAPEL FARM, FOXTON ROAD, LUBENHAM, MARKET HARBOROUGH, LE16 7RY	WEX201864	Disposing of waste exemption	On a Farm	Deposit of waste from dredging of inland waters
В	321m W	CHAPEL FARM, FOXTON ROAD, LUBENHAM, MARKET HARBOROUGH, LE16 7RY	WEX201864	Treating waste exemption	On a Farm	Treatment of waste wood and waste plant matter by chipping, shredding, cutting or pulverising
В	321m W	CHAPEL FARM, FOXTON ROAD, LUBENHAM, MARKET HARBOROUGH, LE16 7RY	WEX201864	Treating waste exemption	On a Farm	Screening and blending of waste
В	321m W	CHAPEL FARM, FOXTON ROAD, LUBENHAM, MARKET HARBOROUGH, LE16 7RY	WEX201864	Using waste exemption	On a Farm	Spreading of plant matter to confer benefit
В	321m W	CHAPEL FARM, FOXTON ROAD, LUBENHAM, MARKET HARBOROUGH, LE16 7RY	WEX201864	Using waste exemption	On a Farm	Spreading waste on agricultural land to confer benefit
В	321m W	CHAPEL FARM, FOXTON ROAD, LUBENHAM, MARKET HARBOROUGH, LE16 7RY	WEX201864	Using waste exemption	On a Farm	Use of waste for a specified purpose
В	321m W	CHAPEL FARM, FOXTON ROAD, LUBENHAM, MARKET HARBOROUGH, LE16 7RY	WEX201864	Using waste exemption	On a Farm	Use of waste in construction

ID	Location	Site	Reference	Category	Sub-Category	Description
В	321m W	CHAPEL FARM, FOXTON ROAD, LUBENHAM, MARKET HARBOROUGH, LE16 7RY	WEX038985	Disposing of waste exemption	On a farm	Deposit of waste from dredging of inland waters
В	321m W	CHAPEL FARM, FOXTON ROAD, LUBENHAM, MARKET HARBOROUGH, LE16 7RY	WEX038985	Disposing of waste exemption	On a farm	Burning waste in the open
В	321m W	CHAPEL FARM, FOXTON ROAD, LUBENHAM, MARKET HARBOROUGH, LE16 7RY	WEX038985	Treating waste exemption	On a farm	Screening and blending of waste
В	321m W	CHAPEL FARM, FOXTON ROAD, LUBENHAM, MARKET HARBOROUGH, LE16 7RY	WEX038985	Treating waste exemption	On a farm	Treatment of waste wood and waste plant matter by chipping, shredding, cutting or pulverising
В	321m W	CHAPEL FARM, FOXTON ROAD, LUBENHAM, MARKET HARBOROUGH, LE16 7RY	WEX038985	Using waste exemption	On a farm	Use of waste in construction
В	321m W	CHAPEL FARM, FOXTON ROAD, LUBENHAM, MARKET HARBOROUGH, LE16 7RY	WEX038985	Using waste exemption	On a farm	Spreading waste on agricultural land to confer benefit
В	321m W	CHAPEL FARM, FOXTON ROAD, LUBENHAM, MARKET HARBOROUGH, LE16 7RY	WEX038985	Using waste exemption	On a farm	Use of waste for a specified purpose
В	322m W	Chapel Farm Foxton Road MARKET HARBOROUGH Rutland LE16 7RY	EPR/HE5986U S/A001	Disposing of waste exemption	Agricultural Waste Only	Burning waste in the open
В	322m W	Chapel Farm Foxton Road MARKET HARBOROUGH Rutland LE16 7RY	EPR/HE5986U S/A001	Disposing of waste exemption	Both agricultural and non- agricultural waste	Deposit of waste from dredging of inland waters
В	322m W	Chapel Farm Foxton Road MARKET HARBOROUGH Rutland LE16 7RY	EPR/HE5986U S/A001	Treating waste exemption	Both agricultural and non- agricultural waste	Screening and blending of waste

Ref: GS-7181731 Your ref: 21829KJD10208 Grid ref: 470590 288909

ID	Location	Site	Reference	Category	Sub-Category	Description
В	322m W	Chapel Farm Foxton Road MARKET HARBOROUGH Rutland LE16 7RY	EPR/HE5986U S/A001	Treating waste exemption	Both agricultural and non- agricultural waste	Treatment of waste wood and waste plant matter by chipping, shredding, cutting or pulverising
В	322m W	Chapel Farm Foxton Road MARKET HARBOROUGH Rutland LE16 7RY	EPR/HE5986U S/A001	Using waste exemption	Both agricultural and non- agricultural waste	Use of waste in construction
В	322m W	Chapel Farm Foxton Road MARKET HARBOROUGH Rutland LE16 7RY	EPR/HE5986U S/A001	Using waste exemption	Both agricultural and non- agricultural waste	Spreading waste on agricultural land to confer benefit
В	322m W	Chapel Farm Foxton Road MARKET HARBOROUGH Rutland LE16 7RY	EPR/HE5986U S/A001	Using waste exemption	Both agricultural and non- agricultural waste	Use of waste for a specified purpose
2	342m SE	-	WEX000548	Storing waste exemption	On a farm	Storage of sludge

This data is sourced from the Environment Agency and Natural Resources Wales.

4 Current industrial land use

4.1 Recent industrial land uses

Records within 250m

Current potentially contaminative industrial sites.

Features are displayed on the Current industrial land use map on page 23

ID	Location	Company	Address	Activity	Category
2	79m N	Tank	Leicestershire, LE16	Tanks (Generic)	Industrial Features
3	214m N	Electricity Sub Station	Leicestershire, LE16	Electrical Features	Infrastructure and Facilities

This data is sourced from Ordnance Survey.

Ref: GS-7181731 Your ref: 21829KJD10208 Grid ref: 470590 288909

4.2 Current or recent petrol stations

Records within 500m

Open, closed, under development and obsolete petrol stations.

This data is sourced from Experian.

4.3 Electricity cables

Records within 500m

High voltage underground electricity transmission cables.

This data is sourced from National Grid.

4.4 Gas pipelines

Records within 500m

High pressure underground gas transmission pipelines.

Features are displayed on the Current industrial land use map on page 23

ID	Location	Pipe Name	Details	
1	65m SE	DUDDINGTON TO CHURCHOVER	Pipe Number: - Pipeline Safety Regulations Number: - Ownership: National Grid Maximum Operating Pressure (Bar): -	Pipeline Diameter (mm): 900 Wall Thickness (mm): - Year of commission: Not specified Abandonment Status: Not abandoned

This data is sourced from National Grid.

4.5 Sites determined as Contaminated Land

Records within	500m
----------------	------

Contaminated Land Register of sites designated under Part 2a of the Environmental Protection Act 1990.

This data is sourced from Local Authority records.

4.6 Control of Major Accident Hazards (COMAH)

Records within 500m

Control of Major Accident Hazards (COMAH) sites. This data includes upper and lower tier sites, and includes a historical archive of COMAH sites and Notification of Installations Handling Hazardous Substances (NIHHS) records.

This data is sourced from the Health and Safety Executive.

0

0

1

0

Ref: GS-7181731 Your ref: 21829KJD10208 Grid ref: 470590 288909

4.7 Regulated explosive sites

Records within 500m

Sites registered and licensed by the Health and Safety Executive under the Manufacture and Storage of Explosives Regulations 2005 (MSER). The last update to this data was in April 2011.

This data is sourced from the Health and Safety Executive.

4.8 Hazardous substance storage/usage

Records within 500m

Consents granted for a site to hold certain quantities of hazardous substances at or above defined limits in accordance with the Planning (Hazardous Substances) Regulations 2015.

This data is sourced from Local Authority records.

4.9 Historical licensed industrial activities (IPC)

Records within 500m

Integrated Pollution Control (IPC) records of substance releases to air, land and water. This data represents a historical archive as the IPC regime has been superseded.

This data is sourced from the Environment Agency and Natural Resources Wales.

4.10 Licensed industrial activities (Part A(1))

Records within 500m

Records of Part A(1) installations regulated under the Environmental Permitting (England and Wales) Regulations 2016 for the release of substances to the environment.

This data is sourced from the Environment Agency and Natural Resources Wales.

4.11 Licensed pollutant release (Part A(2)/B)

Records within 500m

Records of Part A(2) and Part B installations regulated under the Environmental Permitting (England and Wales) Regulations 2016 for the release of substances to the environment.

This data is sourced from Local Authority records.

0

0

0

0

4.12 Radioactive Substance Authorisations

Records within 500m

Records of the storage, use, accumulation and disposal of radioactive substances regulated under the Radioactive Substances Act 1993.

This data is sourced from the Environment Agency and Natural Resources Wales.

4.13 Licensed Discharges to controlled waters

Records within 500m

Discharges of treated or untreated effluent to controlled waters under the Water Resources Act 1991.

This data is sourced from the Environment Agency and Natural Resources Wales.

4.14 Pollutant release to surface waters (Red List)

Records within 500m

Discharges of specified substances under the Environmental Protection (Prescribed Processes and Substances) Regulations 1991.

This data is sourced from the Environment Agency and Natural Resources Wales.

4.15 Pollutant release to public sewer

Records within 500m

Records within 500m

Discharges of Special Category Effluents to the public sewer.

This data is sourced from the Environment Agency and Natural Resources Wales.

4.16 List 1 Dangerous Substances

Discharges of substances identified on List I of European Directive E 2006/11/EC, and regulated under the Environmental Damage (Prevention and Remediation) Regulations 2015.

This data is sourced from the Environment Agency and Natural Resources Wales.

0

0

0

0

4.17 List 2 Dangerous Substances

Records within 500m

Discharges of substances identified on List II of European Directive E 2006/11/EC, and regulated under the Environmental Damage (Prevention and Remediation) Regulations 2015.

This data is sourced from the Environment Agency and Natural Resources Wales.

4.18 Pollution Incidents (EA/NRW)

Records within 500m

Records of substantiated pollution incidents. Since 2006 this data has only included category 1 (major) and 2 (significant) pollution incidents.

Features are displayed on the Current industrial land use map on page 23

ID	Location	Details	
4	368m N	Incident Date: 15/07/2002 Incident Identification: 91811 Pollutant: Contaminated Water Pollutant Description: Firefighting Run-Off	Water Impact: Category 4 (No Impact) Land Impact: Category 4 (No Impact) Air Impact: Category 4 (No Impact)

This data is sourced from the Environment Agency and Natural Resources Wales.

4.19 Pollution inventory substances

Records within 500m	0
The pollution inventory (substances) includes reporting on annual emissions of certain regulate	ed substances t

The pollution inventory (substances) includes reporting on annual emissions of certain regulated substances to air, controlled waters and land. A reporting threshold for each substance is also included. Where emissions fall below the reporting threshold, no value will be given. The data is given for the most recent complete year available.

This data is sourced from the Environment Agency and the Scottish Environment Protection Agency.

4.20 Pollution inventory waste transfers

Records within 500m

The pollution inventory (waste transfers) includes reporting on annual transfers and recovery/disposal of controlled wastes from a site. A reporting threshold for each waste type is also included. Where releases fall below the reporting threshold, no value will be given. The data is given for the most recent complete year available.

This data is sourced from the Environment Agency and the Scottish Environment Protection Agency.

0

0

0

4.21 Pollution inventory radioactive waste

Records within 500m

The pollution inventory (radioactive wastes) includes reporting on annual releases of radioactive substances from a site, including the means of release. Where releases fall below the reporting threshold, no value will be given. The data is given for the most recent complete year available.

This data is sourced from the Environment Agency and the Scottish Environment Protection Agency.

5 Hydrogeology - Superficial aquifer

5.1 Superficial aquifer

Records within 500m

Aquifer status of groundwater held within superficial geology.

Features are displayed on the Hydrogeology map on page 29

ID	Location	Designation	Description
1	293m SE	Secondary Undifferentiated	Assigned where it is not possible to attribute either category A or B to a rock type. In general these layers have previously been designated as both minor and non-aquifer in different locations due to the variable characteristics of the rock type
2	335m NW	Secondary Undifferentiated	Assigned where it is not possible to attribute either category A or B to a rock type. In general these layers have previously been designated as both minor and non-aquifer in different locations due to the variable characteristics of the rock type

ID	Location	Designation	Description
3	345m NW	Secondary Undifferentiated	Assigned where it is not possible to attribute either category A or B to a rock type. In general these layers have previously been designated as both minor and non-aquifer in different locations due to the variable characteristics of the rock type
4	461m NW	Secondary Undifferentiated	Assigned where it is not possible to attribute either category A or B to a rock type. In general these layers have previously been designated as both minor and non-aquifer in different locations due to the variable characteristics of the rock type

This data is sourced from the British Geological Survey, the Environment Agency and Natural Resources Wales.

Ref: GS-7181731 Your ref: 21829KJD10208 Grid ref: 470590 288909

Bedrock aquifer

5.2 Bedrock aquifer

Records within 500m	2
Aquifer status of groundwater held within bedrock geology.	
Features are displayed on the Bedrock aquifer map on page 31	
Features are displayed on the Bedrock aquifer map on page 31	

ID	Location	Designation	Description
1	On site	Secondary (undifferentiated)	Assigned where it is not possible to attribute either category A or B to a rock type. In general these layers have previously been designated as both minor and non- aquifer in different locations due to the variable characteristics of the rock type
2	105m W	Secondary (undifferentiated)	Assigned where it is not possible to attribute either category A or B to a rock type. In general these layers have previously been designated as both minor and non-aquifer in different locations due to the variable characteristics of the rock type

This data is sourced from the British Geological Survey, the Environment Agency and Natural Resources Wales.

Groundwater vulnerability

5.3 Groundwater vulnerability

Records within 50m

An assessment of the vulnerability of groundwater to a pollutant discharged at ground level based on the hydrological, geological, hydrogeological and soil properties within a one kilometre square grid. Groundwater vulnerability is described as High, Medium or Low as follows:

- High Areas able to easily transmit pollution to groundwater. They are likely to be characterised by high leaching soils and the absence of low permeability superficial deposits.
- Medium Intermediate between high and low vulnerability.
- Low Areas that provide the greatest protection from pollution. They are likely to be characterised by low leaching soils and/or the presence of superficial deposits characterised by a low permeability.

Features are displayed on the Groundwater vulnerability map on page 33

Ref: GS-7181731 Your ref: 21829KJD10208 Grid ref: 470590 288909

ID	Location	Summary	Soil / surface	Superficial geology	Bedrock geology
1	On site	Summary Classification: Secondary bedrock aquifer - Medium Vulnerability Combined classification: Productive Bedrock Aquifer, No Superficial Aquifer	Leaching class: Low Infiltration value: 40- 70% Dilution value: <300mm/year	Vulnerability: - Aquifer type: - Thickness: <3m Patchiness value: <90% Recharge potential: No Data	Vulnerability: Medium Aquifer type: Secondary Flow mechanism: Mixed
2	2m N	Summary Classification: Secondary bedrock aquifer - Medium Vulnerability Combined classification: Productive Bedrock Aquifer, No Superficial Aquifer	Leaching class: Low Infiltration value: 40- 70% Dilution value: <300mm/year	Vulnerability: - Aquifer type: - Thickness: <3m Patchiness value: <90% Recharge potential: No Data	Vulnerability: Medium Aquifer type: Secondary Flow mechanism: Mixed

This data is sourced from the British Geological Survey, the Environment Agency and Natural Resources Wales.

5.4 Groundwater vulnerability- soluble rock risk

Reco	rds	on	site
		••••	

This dataset identifies areas where solution features that enable rapid movement of a pollutant may be present within a 1km grid square.

This data is sourced from the British Geological Survey and the Environment Agency.

5.5 Groundwater vulnerability- local information

Records on site

This dataset identifies areas where additional local information affecting vulnerability is held by the Environment Agency. Further information can be obtained by contacting the Environment Agency local Area groundwater team through the Environment Agency National Customer Call Centre on 03798 506 506 or by email on enquiries@environment-agency.gov.uk.

This data is sourced from the British Geological Survey and the Environment Agency.

Ref: GS-7181731 Your ref: 21829KJD10208 Grid ref: 470590 288909

Abstractions and Source Protection Zones

5.6 Groundwater abstractions

Records within 2000m

Licensed groundwater abstractions for sites extracting more than 20 cubic metres of water a day and includes active and historical records. The data may be for a single abstraction point, between two points (line data) or a larger area.

Features are displayed on the Abstractions and Source Protection Zones map on page 35

Ref: GS-7181731 Your ref: 21829KJD10208 Grid ref: 470590 288909

ID	Location	Details	
-	1443m NW	Status: Historical Licence No: 5/31/03/*G/0029 Details: General Farming & Domestic Direct Source: GROUND WATER SOURCE OF SUPPLY Point: WELL - SPINNEY HILL FARM Data Type: Point Name: COCKROFT Easting: 468800 Northing: 289300	Annual Volume (m ³): - Max Daily Volume (m ³): - Original Application No: - Original Start Date: 01/01/1978 Expiry Date: - Issue No: 100 Version Start Date: 01/01/1978 Version End Date: -

This data is sourced from the Environment Agency and Natural Resources Wales.

5.7 Surface water abstractions

Records within 2000m	3
anced surface water obstractions for sites outracting more than 20 subic matres of water a day and	

Licensed surface water abstractions for sites extracting more than 20 cubic metres of water a day and includes active and historical records. The data may be for a single abstraction point, a stretch of watercourse or a larger area.

Features are displayed on the Abstractions and Source Protection Zones map on page 35

ID	Location	Details	
-	1443m NW	Status: Historical Licence No: 5/31/03/*S/0029 Details: Make-Up or Top Up Water Direct Source: SURFACE WATER SOURCE OF SUPPLY Point: SPRINGS - SPINNEY HILL FARM Data Type: Point Name: COCKROFT Easting: 468800 Northing: 289300	Annual Volume (m ³): - Max Daily Volume (m ³): - Original Application No: - Original Start Date: 01/01/1978 Expiry Date: - Issue No: 100 Version Start Date: 01/01/1978 Version End Date: -
-	1748m NE	Status: Historical Licence No: 5/31/03/*S/0022 Details: Process water Direct Source: SURFACE WATER SOURCE OF SUPPLY Point: GRAND UNION CANAL, MKT HARBORO Data Type: Point Name: BRITISH WATERWAYS BOARD Easting: 472140 Northing: 290120	Annual Volume (m ³): - Max Daily Volume (m ³): - Original Application No: - Original Start Date: 01/03/1966 Expiry Date: - Issue No: 100 Version Start Date: 01/01/1991 Version End Date: -

Ref: GS-7181731 Your ref: 21829KJD10208 Grid ref: 470590 288909

ID	Location	Details	
-	1776m NE	Status: Historical Licence No: AN/031/0003/001 Details: Make-Up Or Top Up Water Direct Source: SURFACE WATER SOURCE OF SUPPLY Point: GRAND UNION CANAL (MARKET HARBOROUGH ARM) Data Type: Point Name: Canal and River Trust Easting: 472149 Northing: 290152	Annual Volume (m ³): 31536 Max Daily Volume (m ³): 86.4 Original Application No: - Original Start Date: 30/10/2013 Expiry Date: 31/03/2026 Issue No: 1 Version Start Date: 01/04/2014 Version End Date: -

This data is sourced from the Environment Agency and Natural Resources Wales.

5.8 Potable abstractions

Records within 2000m

Licensed potable water abstractions for sites extracting more than 20 cubic metres of water a day and includes active and historical records. The data may be for a single abstraction point, a stretch of watercourse or a larger area.

This data is sourced from the Environment Agency and Natural Resources Wales.

5.9 Source Protection Zones

Records within 500m

Source Protection Zones define the sensitivity of an area around a potable abstraction site to contamination.

This data is sourced from the Environment Agency and Natural Resources Wales.

5.10 Source Protection Zones (confined aquifer)

Records within 500m

Source Protection Zones in the confined aquifer define the sensitivity around a deep groundwater abstraction to contamination. A confined aquifer would normally be protected from contamination by overlying geology and is only considered a sensitive resource if deep excavation/drilling is taking place.

This data is sourced from the Environment Agency and Natural Resources Wales.

0

0

Ref: GS-7181731 Your ref: 21829KJD10208 Grid ref: 470590 288909

6 Hydrology

6.1 Water Network (OS MasterMap)

Records within 250m

Detailed water network of Great Britain showing the flow and precise central course of every river, stream, lake and canal.

Features are displayed on the Hydrology map on page 38

ID	Location	Type of water feature	Ground level	Permanence	Name
1	On site	Inland river not influenced by normal tidal action.	Not provided	Watercourse contains water year round (in normal circumstances)	-

ID	Location	Type of water feature	Ground level	Permanence	Name
Α	On site	Inland river not influenced by normal tidal action.	On ground surface	Watercourse contains water year round (in normal circumstances)	-
В	On site	Inland river not influenced by normal tidal action.	On ground surface	Watercourse contains water year round (in normal circumstances)	-
В	On site	Inland river not influenced by normal tidal action.	Underground	Watercourse contains water year round (in normal circumstances)	-
С	On site	Inland river not influenced by normal tidal action.	On ground surface	Watercourse contains water year round (in normal circumstances)	-
D	On site	Inland river not influenced by normal tidal action.	On ground surface	Watercourse contains water year round (in normal circumstances)	-

This data is sourced from the Ordnance Survey.

6.2 Surface water features

Records within 250m

Covering rivers, streams and lakes (some overlap with OS MasterMap Water Network data in previous section) but additionally covers smaller features such as ponds. Rivers and streams narrower than 5m are represented as a single line. Lakes, ponds and rivers or streams wider than 5m are represented as polygons.

Features are displayed on the Hydrology map on page 38

This data is sourced from the Ordnance Survey.

6.3 WFD Surface water body catchments

Records on site

The Water Framework Directive is an EU-led framework for the protection of inland surface waters, estuaries, coastal waters and groundwater through river basin-level management planning. In terms of surface water, these basins are broken down into smaller units known as management, operational and water body catchments.

Features are displayed on the Hydrology map on page 38

1

1

ID	Location	Туре	Water body catchment	Water body ID	Operational catchment	Management catchment
2	On site	River WB catchment	Welland - headwaters to conf Jordan	GB105031045630	Upper Welland	Welland

This data is sourced from the Environment Agency and Natural Resources Wales.

6.4 WFD Surface water bodies

Records identified

Surface water bodies under the Directive may be rivers, lakes, estuary or coastal. To achieve the purpose of the Directive, environmental objectives have been set and are reported on for each water body. The progress towards delivery of the objectives is then reported on by the relevant competent authorities at the end of each six-year cycle. The river water body directly associated with the catchment listed in the previous section is detailed below, along with any lake, canal, coastal or artificial water body within 250m of the site. Click on the water body ID in the table to visit the EA Catchment Explorer to find out more about each water body listed.

Features are displayed on the Hydrology map on page 38

ID	Location	Туре	Name	Water body ID	Overall rating	Chemical rating	Ecological rating	Year
-	1414m S	River	Welland - headwaters to conf Jordan	<u>GB105031045630</u>	Poor	Good	Poor	2016

This data is sourced from the Environment Agency and Natural Resources Wales.

6.5 WFD Groundwater bodies

Groundwater bodies are also covered by the Directive and the same regime of objectives and reporting detailed in the previous section is in place. Click on the water body ID in the table to visit the EA Catchment Explorer to find out more about each groundwater body listed.

Features are displayed on the Hydrology map on page 38

ID	Location	Name	Water body ID	Overall rating	Chemical rating	Quantitative	Year
В	On site	Welland Lower Jurassic Unit	<u>GB40502G304000</u>	Good	Good	Good	2015

This data is sourced from the Environment Agency and Natural Resources Wales.

7 River and coastal flooding

7.1 Risk of Flooding from Rivers and Sea (RoFRaS)

Records within 50m

The chance of flooding from rivers and/or the sea in any given year, based on cells of 50m. Each cell is allocated one of four flood risk categories, taking into account flood defences and their condition; Very low (less than 1 in 1000 chance in any given year), Low (less than 1 in 100 but greater than or equal to 1 in 1000 chance), Medium (less than 1 in 30 but greater than or equal to 1 in 100 chance) or High (greater than or equal to 1 in 30 chance).

This data is sourced from the Environment Agency and Natural Resources Wales.

7.2 Historical Flood Events

Records within 250m

Records of historic flooding from rivers, the sea, groundwater and surface water. Records began in 1946 when predecessor bodies started collecting detailed information about flooding incidents, although limited details may be included on flooding incidents prior to this date. Takes into account the presence of defences, structures, and other infrastructure where they existed at the time of flooding, and includes flood extents that may have been affected by overtopping, breaches or blockages.

This data is sourced from the Environment Agency and Natural Resources Wales.

7.3 Flood Defences

Records within 250m

Records of flood defences owned, managed or inspected by the Environment Agency and Natural Resources Wales. Flood defences can be structures, buildings or parts of buildings. Typically these are earth banks, stone and concrete walls, or sheet-piling that is used to prevent or control the extent of flooding.

This data is sourced from the Environment Agency and Natural Resources Wales.

7.4 Areas Benefiting from Flood Defences

Records within 250m

Areas that would benefit from the presence of flood defences in a 1 in 100 (1%) chance of flooding each year from rivers or 1 in 200 (0.5%) chance of flooding each year from the sea.

This data is sourced from the Environment Agency and Natural Resources Wales.

0

0

0

7.5 Flood Storage Areas

Records within 250m

Areas that act as a balancing reservoir, storage basin or balancing pond to attenuate an incoming flood peak to a flow level that can be accepted by the downstream channel or to delay the timing of a flood peak so that its volume is discharged over a longer period.

This data is sourced from the Environment Agency and Natural Resources Wales.

0

0

River and coastal flooding - Flood Zones

7.6 Flood Zone 2

Records within 50m

Areas of land at risk of flooding, when the presence of flood defences are ignored. Covering land between Flood Zone 3 (see next section) and the extent of the flooding from rivers or the sea with a 1 in 1000 (0.1%) chance of flooding each year.

This data is sourced from the Environment Agency and Natural Resources Wales.

7.7 Flood Zone 3

Records within 50m

Areas of land at risk of flooding, when the presence of flood defences are ignored. Covering land with a 1 in 100 (1%) or greater chance of flooding each year from rivers or a 1 in 200 (0.5%) or greater chance of flooding each year from the sea.

This data is sourced from the Environment Agency and Natural Resources Wales.

Ref: GS-7181731 Your ref: 21829KJD10208 Grid ref: 470590 288909

8 Surface water flooding

8.1 Surface water flooding

Highest risk on site

1 in 30 year, 0.3m - 1.0m

Highest risk within 50m

1 in 30 year, 0.3m - 1.0m

Ambiental Risk Analytics surface water (pluvial) FloodMap identifies areas likely to flood as a result of extreme rainfall events, i.e. land naturally vulnerable to surface water ponding or flooding. This data set was produced by simulating 1 in 30 year, 1 in 100 year, 1 in 250 year and 1 in 1,000 year rainfall events. Modern urban drainage systems are typically built to cope with rainfall events between 1 in 20 and 1 in 30 years, though some older ones may flood in a 1 in 5 year rainfall event.

Features are displayed on the Surface water flooding map on page 44

The data shown on the map and in the table above shows the highest likelihood of flood events happening at the site. Lower likelihood events may have greater flood depths and hence a greater potential impact on a site.

The table below shows the maximum flood depths for a range of return periods for the site.

Return period	Maximum modelled depth
1 in 1000 year	Greater than 1.0m
1 in 250 year	Greater than 1.0m
1 in 100 year	Between 0.3m and 1.0m
1 in 30 year	Between 0.3m and 1.0m

This data is sourced from Ambiental Risk Analytics.

Ref: GS-7181731 Your ref: 21829KJD10208 Grid ref: 470590 288909

9 Groundwater flooding

9.1 Groundwater flooding

Highest risk on site	Negligible
Highest risk within 50m	Negligible

Groundwater flooding is caused by unusually high groundwater levels. It occurs when the water table rises above the ground surface or within underground structures such as basements or cellars. Groundwater flooding tends to exhibit a longer duration than surface water flooding, possibly lasting for weeks or months, and as a result it can cause significant damage to property. This risk assessment is based on a 1 in 100 year return period and a 5m Digital Terrain Model (DTM).

Features are displayed on the Groundwater flooding map on page 46

This data is sourced from Ambiental Risk Analytics.

10 Environmental designations

10.1 Sites of Special Scientific Interest (SSSI)

Records within 2000m

Sites providing statutory protection for the best examples of UK flora, fauna, or geological or physiographical features. Originally notified under the National Parks and Access to the Countryside Act 1949, SSSIs were renotified under the Wildlife and Countryside Act 1981. Improved provisions for the protection and management of SSSIs were introduced by the Countryside and Rights of Way Act 2000 (in England and Wales) and (in Scotland) by the Nature Conservation (Scotland) Act 2004 and the Wildlife and Natural Environment (Scotland) Act 2010.

This data is sourced from Natural England, Natural Resources Wales and Scottish Natural Heritage.

10.2 Conserved wetland sites (Ramsar sites)

Records within 2000m

Ramsar sites are designated under the Convention on Wetlands of International Importance, agreed in Ramsar, Iran, in 1971. They cover all aspects of wetland conservation and wise use, recognizing wetlands as ecosystems that are extremely important for biodiversity conservation in general and for the well-being of human communities. These sites cover a broad definition of wetland; marsh, fen, peatland or water, whether natural or artificial, permanent or temporary, with water that is static or flowing, fresh, brackish or salt, and even some marine areas.

This data is sourced from Natural England, Natural Resources Wales and Scottish Natural Heritage.

10.3 Special Areas of Conservation (SAC)

Records within 2000m

Areas which have been identified as best representing the range and variety within the European Union of habitats and (non-bird) species listed on Annexes I and II to the Directive. SACs are designated under the EC Habitats Directive.

This data is sourced from Natural England, Natural Resources Wales and Scottish Natural Heritage.

10.4 Special Protection Areas (SPA)

Records within 2000m

Sites classified by the UK Government under the EC Birds Directive, SPAs are areas of the most important habitat for rare (listed on Annex I to the Directive) and migratory birds within the European Union.

This data is sourced from Natural England, Natural Resources Wales and Scottish Natural Heritage.

0

0

0

10.5 National Nature Reserves (NNR)

Records within 2000m

Sites containing examples of some of the most important natural and semi-natural terrestrial and coastal ecosystems in Great Britain. They are managed to conserve their habitats, provide special opportunities for scientific study or to provide public recreation compatible with natural heritage interests.

This data is sourced from Natural England, Natural Resources Wales and Scottish Natural Heritage.

10.6 Local Nature Reserves (LNR)

Records within 2000m

Sites managed for nature conservation, and to provide opportunities for research and education, or simply enjoying and having contact with nature. They are declared by local authorities under the National Parks and Access to the Countryside Act 1949 after consultation with the relevant statutory nature conservation agency.

This data is sourced from Natural England, Natural Resources Wales and Scottish Natural Heritage.

10.7 Designated Ancient Woodland

Records within 2000m

Ancient woodlands are classified as areas which have been wooded continuously since at least 1600 AD. This includes semi-natural woodland and plantations on ancient woodland sites. 'Wooded continuously' does not mean there is or has previously been continuous tree cover across the whole site, and not all trees within the woodland have to be old.

This data is sourced from Natural England, Natural Resources Wales and Scottish Natural Heritage.

10.8 Biosphere Reserves

Records within 2000m

Biosphere Reserves are internationally recognised by UNESCO as sites of excellence to balance conservation and socioeconomic development between nature and people. They are recognised under the Man and the Biosphere (MAB) Programme with the aim of promoting sustainable development founded on the work of the local community.

This data is sourced from Natural England, Natural Resources Wales and Scottish Natural Heritage.

0

0

0

10.9 Forest Parks

Records within 2000m

These are areas managed by the Forestry Commission designated on the basis of recreational, conservation or scenic interest.

This data is sourced from the Forestry Commission.

10.10 Marine Conservation Zones

Records within 2000m

A type of marine nature reserve in UK waters established under the Marine and Coastal Access Act (2009). They are designated with the aim to protect nationally important, rare or threatened habitats and species.

This data is sourced from Natural England, Natural Resources Wales and Scottish Natural Heritage.

10.11 Green Belt

Records within 2000m

Bacarda within 2000m

Areas designated to prevent urban sprawl by keeping land permanently open.

This data is sourced from the Ministry of Housing, Communities and Local Government.

10.12 Proposed Ramsar sites

NECOI	us	WILIIII	2000111	

Ramsar sites are areas listed as a Wetland of International Importance under the Convention on Wetlands of International Importance especially as Waterfowl Habitat (the Ramsar Convention) 1971. The sites here supplied have a status of 'Proposed' having been identified for potential adoption under the framework.

This data is sourced from Natural England.

10.13 Possible Special Areas of Conservation (pSAC)

Records within 2000m

Special Areas of Conservation are areas which have been identified as best representing the range and variety within the European Union of habitats and (non-bird) species listed on Annexes I and II to the Directive. SACs are designated under the EC Habitats Directive. Those sites supplied here are those with a status of 'Possible' having been identified for potential adoption under the framework.

This data is sourced from Natural England and Natural Resources Wales.

0

0

0

0

10.14 Potential Special Protection Areas (pSPA)

Records within 2000m

Special Protection Areas (SPAs) are areas designated (or 'classified') under the European Union Wild Birds Directive for the protection of nationally and internationally important populations of wild birds. Those sites supplied here are those with a status of 'Potential' having been identified for potential adoption under the framework.

This data is sourced from Natural England.

10.15 Nitrate Sensitive Areas

Records within 2000m

Areas where nitrate concentrations in drinking water sources exceeded or was at risk of exceeding the limit of 50 mg/l set by the 1980 EC Drinking Water Directive. Voluntary agricultural measures as a means of reducing the levels of nitrate were introduced by DEFRA as MAFF, with payments being made to farmers who complied. The scheme was started as a pilot in 1990 in ten areas, later implemented within 32 areas. The scheme was closed to further new entrants in 1998, although existing agreements continued for their full term. All Nitrate Sensitive Areas fell within the areas designated as Nitrate Vulnerable Zones (NVZs) in 1996 under the EC Nitrate Directive (91/676/EEC).

This data is sourced from Natural England.

10.16 Nitrate Vulnerable Zones

Records within 2000m

Areas at risk from agricultural nitrate pollution designated under the EC Nitrate Directive (91/676/EEC). These area areas of land that drain into waters polluted by nitrates. Farmers operating within these areas have to follow mandatory rules to tackle nitrate loss from agriculture.

Location	Name	Туре	NVZ ID	Status
On site	River Welland NVZ	Surface Water	\$832	Existing

This data is sourced from Natural England and Natural Resources Wales.

0

0

Ref: GS-7181731 Your ref: 21829KJD10208 Grid ref: 470590 288909

SSSI Impact Zones and Units

10.17 SSSI Impact Risk Zones

Records on site

Developed to allow rapid initial assessment of the potential risks to SSSIs posed by development proposals. They define zones around each SSSI which reflect the particular sensitivities of the features for which it is notified and indicate the types of development proposal which could potentially have adverse impacts.

Features are displayed on the SSSI Impact Zones and Units map on page 51

ID	Location	Type of developments requiring consultation
1	On site	Infrastructure - Airports, helipads and other aviation proposals. Minerals, Oil and Gas - Planning applications for quarries, including: new proposals, Review of Minerals Permissions (ROMP), extensions, variations to conditions etc. Oil & gas exploration/extraction. Air pollution - Livestock & poultry units with floorspace > 500m ² , slurry lagoons > 750m ² & manure stores > 3500t.

0

ID	Location	Type of developments requiring consultation
2	On site	Infrastructure - Airports, helipads and other aviation proposals. Air pollution - Livestock & poultry units with floorspace > 500m², slurry lagoons > 750m² & manure stores > 3500t.

This data is sourced from Natural England.

10.18 SSSI Units

Divisions of SSSIs used to record management and condition details. Units are the smallest areas for which Natural England gives a condition assessment, however, the size of units varies greatly depending on the types of management and the conservation interest.

This data is sourced from Natural England and Natural Resources Wales.

11 Visual and cultural designations

11.1 World Heritage Sites

Records within 250m

Sites designated for their globally important cultural or natural interest requiring appropriate management and protection measures. World Heritage Sites are designated to meet the UK's commitments under the World Heritage Convention.

This data is sourced from Historic England, Cadw and Historic Environment Scotland.

11.2 Area of Outstanding Natural Beauty

Records within 250m

Areas of Outstanding Natural Beauty (AONB) are conservation areas, chosen because they represent 18% of the finest countryside. Each AONB has been designated for special attention because of the quality of their flora, fauna, historical and cultural associations, and/or scenic views. The National Parks and Access to the Countryside Act of 1949 created AONBs and the Countryside and Rights of Way Act, 2000 added further regulation and protection. There are likely to be restrictions to some developments within these areas.

This data is sourced from Natural England, Natural Resources Wales and Scottish Natural Heritage.

11.3 National Parks

Records within 250m

In England and Wales, the purpose of National Parks is to conserve and enhance landscapes within the countryside whilst promoting public enjoyment of them and having regard for the social and economic wellbeing of those living within them. In Scotland National Parks have the additional purpose of promoting the sustainable use of the natural resources of the area and the sustainable social and economic development of its communities. The National Parks and Access to the Countryside Act 1949 established the National Park designation in England and Wales, and The National Parks (Scotland) Act 2000 in Scotland.

This data is sourced from Natural England, Natural Resources Wales and the Scottish Government.

11.4 Listed Buildings

Records within 250m

Buildings listed for their special architectural or historical interest. Building control in the form of 'listed building consent' is required in order to make any changes to that building which might affect its special interest. Listed buildings are graded to indicate their relative importance, however building controls apply to all buildings equally, irrespective of their grade, and apply to the interior and exterior of the building in its entirety, together with any curtilage structures.

0

0

0

This data is sourced from English Heritage, Cadw and Historic Environment Scotland.

11.5 Conservation Areas

Records within 250m

Local planning authorities are obliged to designate as conservation areas any parts of their own area that are of special architectural or historic interest, the character and appearance of which it is desirable to preserve or enhance. Designation of a conservation area gives broader protection than the listing of individual buildings. All the features within the area, listed or otherwise, are recognised as part of its character. Conservation area designation is the means of recognising the importance of all factors and of ensuring that planning decisions address the quality of the landscape in its broadest sense.

This data is sourced from English Heritage, Cadw and Historic Environment Scotland.

11.6 Scheduled Ancient Monuments

Records within 250m

A scheduled monument is an historic building or site that is included in the Schedule of Monuments kept by the Secretary of State for Digital, Culture, Media and Sport. The regime is set out in the Ancient Monuments and Archaeological Areas Act 1979. The Schedule of Monuments has c.20,000 entries and includes sites such as Roman remains, burial mounds, castles, bridges, earthworks, the remains of deserted villages and industrial sites. Monuments are not graded, but all are, by definition, considered to be of national importance.

This data is sourced from English Heritage, Cadw and Historic Environment Scotland.

11.7 Registered Parks and Gardens

Records within 250m

Parks and gardens assessed to be of particular interest and of special historic interest. The emphasis being on 'designed' landscapes, rather than on planting or botanical importance. Registration is a 'material consideration' in the planning process, meaning that planning authorities must consider the impact of any proposed development on the special character of the landscape.

This data is sourced from English Heritage, Cadw and Historic Environment Scotland.

0

0

Ref: GS-7181731 Your ref: 21829KJD10208 Grid ref: 470590 288909

12 Agricultural designations

12.1 Agricultural Land Classification

Records within 250m

Classification of the quality of agricultural land taking into consideration multiple factors including climate, physical geography and soil properties. It should be noted that the categories for the grading of agricultural land are not consistent across England, Wales and Scotland.

Features are displayed on the Agricultural designations map on page 55

ID	Location	Classification	Description
1	On site	Grade 3	Good to moderate quality agricultural land. Land with moderate limitations which affect the choice of crops, timing and type of cultivation, harvesting or the level of yield. Where more demanding crops are grown yields are generally lower or more variable than on land in Grades 1 and 2.

This data is sourced from Natural England.

Ref: GS-7181731 Your ref: 21829KJD10208 Grid ref: 470590 288909

12.2 Open Access Land

Records within 250m

The Countryside and Rights of Way Act 2000 (CROW Act) gives a public right of access to land without having to use paths. Access land includes mountains, moors, heaths and downs that are privately owned. It also includes common land registered with the local council and some land around the England Coast Path. Generally permitted activities on access land are walking, running, watching wildlife and climbing.

This data is sourced from Natural England and Natural Resources Wales.

12.3 Tree Felling Licences

Records within 250m

Felling Licence Application (FLA) areas approved by Forestry Commission England. Anyone wishing to fell trees must ensure that a licence or permission under a grant scheme has been issued by the Forestry Commission before any felling is carried out or that one of the exceptions apply.

This data is sourced from the Forestry Commission.

12.4 Environmental Stewardship Schemes

Records within 250m 1

Environmental Stewardship covers a range of schemes that provide financial incentives to farmers, foresters and land managers to look after and improve the environment.

Location	Reference	Scheme	Start Date	End date
171m NW	AG00484069	Entry Level Stewardship	01/11/2013	31/10/2018

This data is sourced from Natural England.

12.5 Countryside Stewardship Schemes

Records within 2	250m				0	
				_	_	

Countryside Stewardship covers a range of schemes that provide financial incentives to farmers, foresters and land managers to look after and improve the environment. Main objectives are to improve the farmed environment for wildlife and to reduce diffuse water pollution.

This data is sourced from Natural England.

0

13 Habitat designations

13.1 Priority Habitat Inventory

Records within 250m

Habitats of principal importance as named under Natural Environment and Rural Communities Act (2006) Section 41.

This data is sourced from Natural England.

13.2 Habitat Networks

Records within 250m

Habitat networks for 18 priority habitat networks (based primarily, but not exclusively, on the priority habitat inventory) and areas suitable for the expansion of networks through restoration and habitat creation.

This data is sourced from Natural England.

13.3 Open Mosaic Habitat

Records within 250m

Sites verified as Open Mosaic Habitat. Mosaic habitats are brownfield sites that are identified under the UK Biodiversity Action Plan as a priority habitat due to the habitat variation within a single site, supporting an array of invertebrates.

This data is sourced from Natural England.

13.4 Limestone Pavement Orders

Records within 250m

Limestone pavements are outcrops of limestone where the surface has been worn away by natural means over millennia. These rocks have the appearance of paving blocks, hence their name. Not only do they have geological interest, they also provide valuable habitats for wildlife. These habitats are threatened due to their removal for use in gardens and water features. Many limestone pavements have been designated as SSSIs which affords them some protection. In addition, Section 34 of the Wildlife and Countryside Act 1981 gave them additional protection via the creation of Limestone Pavement Orders, which made it a criminal offence to remove any part of the outcrop. The associated Limestone Pavement Priority Habitat is part of the UK Biodiversity Action Plan priority habitat in England.

This data is sourced from Natural England.

0

0

0

14 Geology 1:10,000 scale - Availability

14.1 10k Availability

Records within 500m

An indication on the coverage of 1:10,000 scale geology data for the site, the most detailed dataset provided by the British Geological Survey. Either 'Full', 'Partial' or 'No coverage' for each geological theme.

Features are displayed on the Geology 1:10,000 scale - Availability map on page 58

ID	Location	Artificial	Superficial	Bedrock	Mass movement	Sheet No.
1	On site	No coverage	Full	Full	No coverage	SP78NW
2	105m W	No coverage	Full	Full	No coverage	SP68NE

This data is sourced from the British Geological Survey.

Geology 1:10,000 scale - Artificial and made ground

14.2 Artificial and made ground (10k)

Records within 500m

0

Details of made, worked, infilled, disturbed and landscaped ground at 1:10,000 scale. Artificial ground can be associated with potentially contaminated material, unpredictable engineering conditions and instability.

This data is sourced from the British Geological Survey.

Ref: GS-7181731 Your ref: 21829KJD10208 Grid ref: 470590 288909

Geology 1:10,000 scale - Superficial

14.3 Superficial geology (10k)

Records within 500m

Superficial geological deposits at 1:10,000 scale. Also known as 'drift', these are the youngest geological deposits, formed during the Quaternary. They rest on older deposits or rocks referred to as bedrock.

Features are displayed on the Geology 1:10,000 scale - Superficial map on page 60

ID	Location	LEX Code	Description	Rock description
1	315m NW	TILMP- DMTN	Till, Mid Pleistocene - Diamicton	Diamicton
2	326m N	TILMP- DMTN	Till, Mid Pleistocene - Diamicton	Diamicton

0

ID	Location	LEX Code	Description	Rock description
3	326m SE	TILMP- DMTN	Till, Mid Pleistocene - Diamicton	Diamicton
4	441m NW	TILMP- DMTN	Till, Mid Pleistocene - Diamicton	Diamicton

This data is sourced from the British Geological Survey.

14.4 Landslip (10k)

Records within 500m

Mass movement deposits on BGS geological maps at 1:10,000 scale. Primarily superficial deposits that have moved down slope under gravity to form landslips. These affect bedrock, other superficial deposits and artificial ground.

This data is sourced from the British Geological Survey.

Ref: GS-7181731 Your ref: 21829KJD10208 Grid ref: 470590 288909

Geology 1:10,000 scale - Bedrock

14.5 Bedrock geology (10k)

Records within 500m

Bedrock geology at 1:10,000 scale. The main mass of rocks forming the Earth and present everywhere, whether exposed at the surface in outcrops or concealed beneath superficial deposits or water.

Features are displayed on the Geology 1:10,000 scale - Bedrock map on page 62

ID	Location	LEX Code	Description	Rock age
1	On site	DYS-SIMD	Dyrham Formation - Siltstone And Mudstone, Interbedded	Pliensbachian Age
2	36m S	CHAM- MDST	Charmouth Mudstone Formation - Mudstone	Pliensbachian Age - Sinemurian Age
3	105m W	DYS-SIMD	Dyrham Formation - Siltstone And Mudstone, Interbedded	Pliensbachian Age

ID	Location	LEX Code	Description	Rock age
4	342m SW	CHAM- MDST	Charmouth Mudstone Formation - Mudstone	Pliensbachian Age - Sinemurian Age

This data is sourced from the British Geological Survey.

14.6 Bedrock faults and other linear features (10k)

Records within 500m

Linear features at the ground or bedrock surface at 1:10,000 scale of six main types; rock, fault, fold axis, mineral vein, alteration area or landform. Features are either observed or inferred, and relate primarily to bedrock.

This data is sourced from the British Geological Survey.

Ref: GS-7181731 Your ref: 21829KJD10208 Grid ref: 470590 288909

15 Geology 1:50,000 scale - Availability

15.1 50k Availability

Records within 500m

An indication on the coverage of 1:50,000 scale geology data for the site. Either 'Full' or 'No coverage' for each geological theme.

Features are displayed on the Geology 1:50,000 scale - Availability map on page 64

ID	Location	Artificial	Superficial	Bedrock	Mass movement	Sheet No.
1	On site	Full	Full	Full	Full	EW170_market_harborough_v4

This data is sourced from the British Geological Survey.

0

0

Geology 1:50,000 scale - Artificial and made ground

15.2 Artificial and made ground (50k)

Records within 500m

Details of made, worked, infilled, disturbed and landscaped ground at 1:50,000 scale. Artificial ground can be associated with potentially contaminated material, unpredictable engineering conditions and instability.

This data is sourced from the British Geological Survey.

15.3 Artificial ground permeability (50k)

Records within 50m

A qualitative classification of estimated rates of vertical movement of water from the ground surface through the unsaturated zone of any artificial deposits (the zone between the land surface and the water table).

This data is sourced from the British Geological Survey.

Ref: GS-7181731 Your ref: 21829KJD10208 Grid ref: 470590 288909

Geology 1:50,000 scale - Superficial

15.4 Superficial geology (50k)

Records within 500m

Superficial geological deposits at 1:50,000 scale. Also known as 'drift', these are the youngest geological deposits, formed during the Quaternary. They rest on older deposits or rocks referred to as bedrock.

Features are displayed on the Geology 1:50,000 scale - Superficial map on page 66

ID	Location	LEX Code	Description	Rock description
1	293m SE	TILMP- DMTN	TILL, MID PLEISTOCENE	DIAMICTON
2	335m NW	TILMP- DMTN	TILL, MID PLEISTOCENE	DIAMICTON

0

0

0

ID	Location	LEX Code	Description	Rock description
3	345m NW	TILMP- DMTN	TILL, MID PLEISTOCENE	DIAMICTON

This data is sourced from the British Geological Survey.

15.5 Superficial permeability (50k)

Records within 50m

A qualitative classification of estimated rates of vertical movement of water from the ground surface through the unsaturated zone of any superficial deposits (the zone between the land surface and the water table).

This data is sourced from the British Geological Survey.

15.6 Landslip (50k)

Records within 500m

Mass movement deposits on BGS geological maps at 1:50,000 scale. Primarily superficial deposits that have moved down slope under gravity to form landslips. These affect bedrock, other superficial deposits and artificial ground.

This data is sourced from the British Geological Survey.

15.7 Landslip permeability (50k)

Records within 50m

A qualitative classification of estimated rates of vertical movement of water from the ground surface through the unsaturated zone of any landslip deposits (the zone between the land surface and the water table).

This data is sourced from the British Geological Survey.

Ref: GS-7181731 Your ref: 21829KJD10208 Grid ref: 470590 288909

Geology 1:50,000 scale - Bedrock

15.8 Bedrock geology (50k)

Records within 500m

Bedrock geology at 1:50,000 scale. The main mass of rocks forming the Earth and present everywhere, whether exposed at the surface in outcrops or concealed beneath superficial deposits or water.

Features are displayed on the Geology 1:50,000 scale - Bedrock map on page 68

ID	Location	LEX Code	Description	Rock age
1	On site	DYS-SIMD	DYRHAM FORMATION - SILTSTONE AND MUDSTONE, INTERBEDDED	PLIENSBACHIAN
2	23m S	CHAM- MDST	CHARMOUTH MUDSTONE FORMATION - MUDSTONE	SINEMURIAN

This data is sourced from the British Geological Survey.

15.9 Bedrock permeability (50k)

Records within 50m	2
--------------------	---

A qualitative classification of estimated rates of vertical movement of water from the ground surface through the unsaturated zone of bedrock (the zone between the land surface and the water table).

Location	Flow type	Maximum permeability	Minimum permeability
On site	Mixed	Moderate	Low
23m SE	Fracture	Low	Low

This data is sourced from the British Geological Survey.

15.10 Bedrock faults and other linear features (50k)

Records within 500m	0

Linear features at the ground or bedrock surface at 1:50,000 scale of six main types; rock, fault, fold axis, mineral vein, alteration area or landform. Features are either observed or inferred, and relate primarily to bedrock.

This data is sourced from the British Geological Survey.

Ref: GS-7181731 Your ref: 21829KJD10208 Grid ref: 470590 288909

16 Boreholes

16.1 BGS Boreholes

Records within 250m

The Single Onshore Boreholes Index (SOBI); an index of over one million records of boreholes, shafts and wells from all forms of drilling and site investigation work held by the British Geological Survey. Covering onshore and nearshore boreholes dating back to at least 1790 and ranging from one to several thousand metres deep.

Features are displayed on the Boreholes map on page 70

ID	Location	Grid reference	Name	Length	Confidential	Web link
А	3m N	470300 288800	MARKET HARBOROUGH 3	6.0	Ν	<u>346636</u>
А	3m N	470300 288800	MARKET HARBOROUGH 4	6.0	Ν	<u>346637</u>
А	3m N	470300 288800	MARKET HARBOROUGH 1	6.0	Ν	<u>346634</u>

ID	Location	Grid reference	Name	Length	Confidential	Web link
А	3m N	470300 288800	MARKET HARBOROUGH 2	6.0	Ν	<u>346635</u>
В	12m N	470529 288921	HMP GARTREE WS21	-	Υ	N/A
С	15m N	470493 288912	HMP GARTREE WS22	-	Υ	N/A
В	17m N	470543 288930	HMP GARTREE WS20	-	Υ	N/A
С	28m N	470482 288922	HMP GARTREE WS23	-	Y	N/A
D	46m NW	470211 288825	HMP GARTREE BHA	-	Y	N/A
D	56m NW	470219 288842	HMP GARTREE TPB	-	Y	N/A
1	57m N	470473 288949	HMP GARTREE WS24	-	Υ	N/A
D	70m N	470217 288857	HMP GARTREE BHB	-	Υ	N/A
D	78m NW	470189 288849	HMP GARTREE BHC	-	Υ	N/A
2	83m N	470465 288974	HMP GARTREE WS25	-	Υ	N/A
D	84m NW	470205 288867	HMP GARTREE TPA	-	Υ	N/A
3	113m N	470455 289002	HMP GARTREE WS26	-	Υ	N/A
4	127m N	470778 289122	HMP GARTREE WS19	-	Υ	N/A
5	139m N	470377 289003	HMP GARTREE WS8	-	Υ	N/A
6	144m N	470443 289031	HMP GARTREE WS27	-	Υ	N/A
7	159m N	470773 289154	HMP GARTREE WS18	-	Υ	N/A
8	174m N	470436 289060	HMP GARTREE WS28	-	Υ	N/A
9	189m N	470770 289184	HMP GARTREE WS17	-	Υ	N/A
10	205m N	470426 289090	HMP GARTREE WS1	-	Υ	N/A
11	218m N	470765 289212	HMP GARTREE WS16	-	Υ	N/A
12	223m N	470443 289114	HMP GARTREE WS2	-	Υ	N/A
13	240m N	470460 289138	HMP GARTREE WS3	-	Υ	N/A
14	247m N	470760 289241	HMP GARTREE WS15	-	Y	N/A

This data is sourced from the British Geological Survey.

17 Natural ground subsidence - Shrink swell clays

17.1 Shrink swell clays

Records within 50m

The potential hazard presented by soils that absorb water when wet (making them swell), and lose water as they dry (making them shrink). This shrink-swell behaviour is controlled by the type and amount of clay in the soil, and by seasonal changes in the soil moisture content (related to rainfall and local drainage).

Features are displayed on the Natural ground subsidence - Shrink swell clays map on page 72

Location	Hazard rating	Details
On site	Low	Ground conditions predominantly medium plasticity.

This data is sourced from the British Geological Survey.

Natural ground subsidence - Running sands

17.2 Running sands

Records within 50m

The potential hazard presented by rocks that can contain loosely-packed sandy layers that can become fluidised by water flowing through them. Such sands can 'run', removing support from overlying buildings and causing potential damage.

Features are displayed on the Natural ground subsidence - Running sands map on page 73

Location	Hazard rating	Details
On site	Negligible	Running sand conditions are not thought to occur whatever the position of the water table. No identified constraints on lands use due to running conditions.

This data is sourced from the British Geological Survey.

Natural ground subsidence - Compressible deposits

17.3 Compressible deposits

Records within 50m

The potential hazard presented by types of ground that may contain layers of very soft materials like clay or peat and may compress if loaded by overlying structures, or if the groundwater level changes, potentially resulting in depression of the ground and disturbance of foundations.

Features are displayed on the Natural ground subsidence - Compressible deposits map on page 74

Location	Hazard rating	Details
On site	Negligible	Compressible strata are not thought to occur.

This data is sourced from the British Geological Survey.

Natural ground subsidence - Collapsible deposits

17.4 Collapsible deposits

Records within 50m

The potential hazard presented by natural deposits that could collapse when a load (such as a building) is placed on them or they become saturated with water.

Features are displayed on the Natural ground subsidence - Collapsible deposits map on page 75

Location	Hazard rating	Details
On site	Very low	Deposits with potential to collapse when loaded and saturated are unlikely to be present.

This data is sourced from the British Geological Survey.

Natural ground subsidence - Landslides

17.5 Landslides

Records within 50m

The potential for landsliding (slope instability) to be a hazard assessed using 1:50,000 scale digital maps of superficial and bedrock deposits, combined with information from the BGS National Landslide Database and scientific and engineering reports.

Features are displayed on the Natural ground subsidence - Landslides map on page 76

Location	Hazard rating	Details
On site	Very low	Slope instability problems are not likely to occur but consideration to potential problems of adjacent areas impacting on the site should always be considered.

This data is sourced from the British Geological Survey.

Natural ground subsidence - Ground dissolution of soluble rocks

17.6 Ground dissolution of soluble rocks

Records within 50m

The potential hazard presented by ground dissolution, which occurs when water passing through soluble rocks produces underground cavities and cave systems. These cavities reduce support to the ground above and can cause localised collapse of the overlying rocks and deposits.

Features are displayed on the Natural ground subsidence - Ground dissolution of soluble rocks map on page 77

Location	Hazard rating	Details
On site	Negligible	Soluble rocks are either not thought to be present within the ground, or not prone to dissolution. Dissolution features are unlikely to be present.

This data is sourced from the British Geological Survey.

18 Mining, ground workings and natural cavities

18.1 Natural cavities

Records within 500m

Industry recognised national database of natural cavities. Sinkholes and caves are formed by the dissolution of soluble rock, such as chalk and limestone, gulls and fissures by cambering. Ground instability can result from movement of loose material contained within these cavities, often triggered by water.

This data is sourced from Peter Brett Associates (PBA).

18.2 BritPits

Records within 500m

BritPits (an abbreviation of British Pits) is a database maintained by the British Geological Survey of currently active and closed surface and underground mineral workings. Details of major mineral handling sites, such as wharfs and rail depots are also held in the database.

This data is sourced from the British Geological Survey.

18.3 Surface ground workings

Records within 250m	11
---------------------	----

Historical land uses identified from Ordnance Survey mapping that involved ground excavation at the surface. These features may or may not have been subsequently backfilled.

Features are displayed on the Mining, ground workings and natural cavities map on page 78

ID	Location	Land Use	Year of mapping	Mapping scale
1	On site	Pond	1885	1:10560
2	On site	Pond	1885	1:10560
3	On site	Pond	1885	1:10560
4	20m NW	Pond	1885	1:10560
5	82m SE	Pond	1885	1:10560
6	147m S	Pond	1885	1:10560
7	186m E	Pond	1885	1:10560
8	191m NW	Pond	1885	1:10560
9	213m S	Pond	1885	1:10560
10	217m NW	Pond	1885	1:10560
11	233m NW	Pond	1885	1:10560

This is data is sourced from Ordnance Survey/Groundsure.

18.4 Underground workings

Records within 1000m

Historical land uses identified from Ordnance Survey mapping that indicate the presence of underground workings e.g. mine shafts.

This is data is sourced from Ordnance Survey/Groundsure.

18.5 Historical Mineral Planning Areas

Records within 500m

Boundaries of mineral planning permissions for England and Wales. This data was collated between the 1940s (and retrospectively to the 1930s) and the mid 1980s. The data includes permitted, withdrawn and refused permissions.

This data is sourced from the British Geological Survey.

18.6 Non-coal mining

Records within 1000m

The potential for historical non-coal mining to have affected an area. The assessment is drawn from expert knowledge and literature in addition to the digital geological map of Britain. Mineral commodities may be divided into seven general categories - vein minerals, chalk, oil shale, building stone, bedded ores, evaporites and 'other' commodities (including ball clay, jet, black marble, graphite and chert).

This data is sourced from the British Geological Survey.

18.7 Mining cavities

Records within 1000m

Industry recognised national database of mining cavities. Degraded mines may result in hazardous subsidence (crown holes). Climatic conditions and water escape can also trigger subsidence over mine entrances and workings.

This data is sourced from Peter Brett Associates (PBA).

18.8 JPB mining areas

Records on site

Areas which could be affected by former coal mining. This data includes some mine plans unavailable to the Coal Authority.

This data is sourced from Johnson Poole and Bloomer.

0

0

0

0

Ref: GS-7181731 Your ref: 21829KJD10208 Grid ref: 470590 288909

18.9 Coal mining

Records on site

Areas which could be affected by past, current or future coal mining.

This data is sourced from the Coal Authority.

18.10 Brine areas

Records on site

The Cheshire Brine Compensation District indicates areas that may be affected by salt and brine extraction in Cheshire and where compensation would be available where damage from this mining has occurred. Damage from salt and brine mining can still occur outside this district, but no compensation will be available.

This data is sourced from the Cheshire Brine Subsidence Compensation Board.

18.11 Gypsum areas

Records on site

Generalised areas that may be affected by gypsum extraction.

This data is sourced from British Gypsum.

18.12 Tin mining

Records on site

Generalised areas that may be affected by historical tin mining.

This data is sourced from Mining Searches UK.

18.13 Clay mining

Records on site	0
Generalised areas that may be affected by kaolin and ball clay extraction.	

This data is sourced from the Kaolin and Ball Clay Association (UK).

0

0

0

Ref: GS-7181731 Your ref: 21829KJD10208 Grid ref: 470590 288909

19 Radon

19.1 Radon

Records on site

Estimated percentage of dwellings exceeding the Radon Action Level. This data is the highest resolution radon dataset available for the UK and is produced to a 75m level of accuracy to allow for geological data accuracy and a 'residential property' buffer. The findings of this section should supersede any estimations derived from the Indicative Atlas of Radon in Great Britain. The data was derived from both geological assessments and long term measurements of radon in more than 479,000 households.

Features are displayed on the Radon map on page 82

Location	Estimated properties affected	Radon Protection Measures required
On site	Less than 1%	None**

This data is sourced from the British Geological Survey and Public Health England.

7

20 Soil chemistry

20.1 BGS Estimated Background Soil Chemistry

Records within 50m

The estimated values provide the likely background concentration of the potentially harmful elements Arsenic, Cadmium, Chromium, Lead and Nickel in topsoil. The values are estimated primarily from rural topsoil data collected at a sample density of approximately 1 per 2 km². In areas where rural soil samples are not available, estimation is based on stream sediment data collected from small streams at a sampling density of 1 per 2.5 km²; this is the case for most of Scotland, Wales and southern England. The stream sediment data are converted to soil-equivalent concentrations prior to the estimation.

Location	Arsenic	Bioaccessible Arsenic	Lead	Bioaccessible Lead	Cadmium	Chromium	Nickel
On site	25 - 35 mg/kg	1 - 2 mg/kg	100 mg/kg	60 mg/kg	1.8 mg/kg	90 - 120 mg/kg	30 - 45 mg/kg
On site	25 - 35 mg/kg	1 - 2 mg/kg	100 mg/kg	60 mg/kg	1.8 mg/kg	90 - 120 mg/kg	30 - 45 mg/kg
On site	25 - 35 mg/kg	1 - 2 mg/kg	100 mg/kg	60 mg/kg	1.8 mg/kg	90 - 120 mg/kg	30 - 45 mg/kg
On site	25 - 35 mg/kg	1 - 2 mg/kg	100 mg/kg	60 mg/kg	1.8 mg/kg	90 - 120 mg/kg	30 - 45 mg/kg
On site 3m NE	25 - 35 mg/kg 25 - 35 mg/kg	1 - 2 mg/kg 1 - 2 mg/kg	100 mg/kg	60 mg/kg 60 mg/kg	1.8 mg/kg 1.8 mg/kg	90 - 120 mg/kg 90 - 120 mg/kg	30 - 45 mg/kg 30 - 45 mg/kg
On site 3m NE 3m NE	25 - 35 mg/kg 25 - 35 mg/kg 25 - 35 mg/kg	1 - 2 mg/kg 1 - 2 mg/kg 1 - 2 mg/kg	100 mg/kg 100 mg/kg 100 mg/kg	60 mg/kg 60 mg/kg 60 mg/kg	1.8 mg/kg 1.8 mg/kg 1.8 mg/kg	90 - 120 mg/kg 90 - 120 mg/kg 90 - 120 mg/kg	30 - 45 mg/kg 30 - 45 mg/kg 30 - 45 mg/kg

This data is sourced from the British Geological Survey.

20.2 BGS Estimated Urban Soil Chemistry

Records within 50m

Estimated topsoil chemistry of Arsenic, Cadmium, Chromium, Copper, Nickel, Lead, Tin and Zinc and bioaccessible Arsenic and Lead in 23 urban centres across Great Britain. These estimates are derived from interpolation of the measured urban topsoil data referred to above and provide information across each city between the measured sample locations (4 per km²).

This data is sourced from the British Geological Survey.

H M PRISON, HM PRISON, WELLAND AVENUE, GARTREE, MARKET HARBOROUGH, LE16 7RP

0

20.3 BGS Measured Urban Soil Chemistry

Records within 50m

The locations and measured total concentrations (mg/kg) of Arsenic, Cadmium, Chromium, Copper, Nickel, Lead, Tin and Zinc in urban topsoil samples from 23 urban centres across Great Britain. These are collected at a sample density of 4 per km².

This data is sourced from the British Geological Survey.

21 Railway infrastructure and projects

21.1 Underground railways (London)

Records within 250m

Details of all active London Underground lines, including approximate tunnel roof depth and operational hours.

This data is sourced from publicly available information by Groundsure.

21.2 Underground railways (Non-London)

Records within 250m

Details of the Merseyrail system, the Tyne and Wear Metro and the Glasgow Subway. Not all parts of all systems are located underground. The data contains location information only and does not include a depth assessment.

This data is sourced from publicly available information by Groundsure.

21.3 Railway tunnels

Records within 250m

Railway tunnels taken from contemporary Ordnance Survey mapping.

This data is sourced from the Ordnance Survey.

21.4 Historical railway and tunnel features

Records within 250m

Railways and tunnels digitised from historical Ordnance Survey mapping as scales of 1:1,250, 1:2,500, 1:10,000 and 1:10,560.

This data is sourced from Ordnance Survey/Groundsure.

21.5 Royal Mail tunnels

Records within 250m

The Post Office Railway, otherwise known as the Mail Rail, is an underground railway running through Central London from Paddington Head District Sorting Office to Whitechapel Eastern Head Sorting Office. The line is 10.5km long. The data includes details of the full extent of the tunnels, the depth of the tunnel, and the depth to track level.

0

0

0

0

0

H M PRISON, HM PRISON, WELLAND AVENUE, GARTREE, MARKET HARBOROUGH, LE16 7RP

This data is sourced from Groundsure/the Postal Museum.

21.6 Historical railways

Records within 250m 0 Former railway lines, including dismantled lines, abandoned lines, disused lines, historic railways and razed lines. This data is sourced from OpenStreetMap. 21.7 Railways

Records within 250m

Currently existing railway lines, including standard railways, narrow gauge, funicular, trams and light railways. This data is sourced from Ordnance Survey and OpenStreetMap.

21.8 Crossrail 1

Records within 500m

The Crossrail railway project links 41 stations over 100 kilometres from Reading and Heathrow in the west, through underground sections in central London, to Shenfield and Abbey Wood in the east.

This data is sourced from publicly available information by Groundsure.

21.9 Crossrail 2

Records within 500m

Crossrail 2 is a proposed railway linking the national rail networks in Surrey and Hertfordshire via an underground tunnel through London.

This data is sourced from publicly available information by Groundsure.

21.10 HS2

Records within 500m

HS2 is a proposed high speed rail network running from London to Manchester and Leeds via Birmingham. Main civils construction on Phase 1 (London to Birmingham) of the project began in 2019, and it is currently anticipated that this phase will be fully operational by 2026. Construction on Phase 2a (Birmingham to Crewe) is anticipated to commence in 2021, with the service fully operational by 2027. Construction on Phase 2b (Crewe to Manchester and Birmingham to Leeds) is scheduled to begin in 2023 and be operational by 2033.

This data is sourced from HS2 ltd.

0

0

0

0

H M PRISON, HM PRISON, WELLAND AVENUE, GARTREE, MARKET HARBOROUGH, LE16 7RP Ref: GS-7181731 Your ref: 21829KJD10208 Grid ref: 470590 288909

Data providers

Groundsure works with respected data providers to bring you the most relevant and accurate information. To find out who they are and their areas of expertise see <u>https://www.groundsure.com/sources-reference</u>.

Terms and conditions

Groundsure's Terms and Conditions can be accessed at this link: <u>https://www.groundsure.com/terms-and-conditions-jan-2020/</u>.

Express Preliminary

UXO Risk Assessment

1st Line Defence Limited Unit 3, Maple Park, Essex Road, Hoddesdon, Herts, EN11 0EX Tel: +44 (0)1992 245 020 E-mail: info@1stlinedefence.co.uk Company No: 7717863 VAT No: 128 8833 79

www.1stlinedefence.co.uk

Client	Dunelm
Project	HMP Gartree. Market Harborough, Leicester
Site Address	HMP Gartree, Gallow Field Road, Market Harborough, Leicester. LE16 7QZ
Report Reference	EP7854b-00
Date	04/11/20
Originator	КН

Assessment Objective

This preliminary risk assessment is a qualitative screening exercise to assess the likely potential of encountering unexploded ordnance (UXO) at the HMP Gartree, Market Harborough, Leicester site. The assessment involves the consideration of the basic factors that affect the potential for UXO to be present at a site as outlined in Stage One of the UXO risk management process.

Background

This assessment uses the sources of information available in-house to 1^{st} Line Defence Ltd to enable the placement of a development site in context with events that may have led to the presence of German air-delivered or Allied military UXO. The report will identify any immediate necessity for risk mitigation or additional research in the form of a Detailed UXO Risk Assessment. It makes use of 1^{st} Line Defence's extensive historical archives, library and unique geo-databases, as well as internet resources, and is researched and compiled by UXO specialists and graduate researchers.

The assessment directly follows CIRIA C681 guidelines "Unexploded Ordnance, a Guide for the Construction Industry". The document will therefore assess the following factors:

- Basic Site Data
- Previous Military Use
- Indicators of potential aerial delivered UXO threat
- Consideration of any Mitigating Factors
- Extent of Proposed Intrusive Works
- Any requirement for Further Work

It should be noted that the vast majority of construction sites in the UK will have a low or negligible risk of encountering UXO and should be able to be screened out at this preliminary stage. The report is meant as a common sense 'first step' in the UXO risk management process. The content of the report and conclusions drawn are based on basic, preliminary research using the information available to 1st Line Defence at the time this report was produced. It should be noted that the only way to entirely negate risk from UXO to a project would be to support the works proposed with appropriate UXO risk mitigation measures. It is rarely possible to state that there is absolutely 'no' risk from UXO to a project.

JI LINE DEI LINCE	ST LINE	DEFENCE
-------------------	----------------	---------

Risk Assessment Considera	itions
Site location and description/current use	The site is located adjacent the grounds of HMP Gartree, resting due south of Gallow Field Road in Leicestershire. Welland Avenue lies west of the site, which is bordered to the immediate east, south, and west by open farmland. The site is situated approximately 1.4km due north of Lubenham. The site itself is comprised primarily of soft- ground in the form of open grassland and gravel pathways within the site boundary. The site also contains areas of denser vegetation centrally within the site, where trees and shrubs are present. A single structure is present on site, resting within the sites northern boundary in an area of dense vegetation. Some hardstanding paved ground is also present along the sites northern boundary, though this paved ground appears in poor condition. The site is approximately centred on the OS grid reference: SP 70627 88795 .
Are there any indicators of current/historical military activity on/close to the site?	During WWII, the site is understood to have been situated within the grounds of RAF Market Harborough. The facility, which began construction in 1942 and was completed in 1943, was utilised as a military airfield containing three concrete runway strips. The runways are recorded to have serviced several dozen large aircraft under the authority of the wartime RAF Bomber Command. It is considered possible that items of heavy ordnance, such as bombs or ammunition for defensive emplacements, were stored within the grounds of the airfield, though the nature of any ordnance storage or defensive positions on- site could not be determined at this preliminary stage.
What was the pre- and post- WWII history of the site?	Prior to WWII, OS mapping of the site area indicates it to have comprised an area of primarily open farmland with several small structures, likely storage shelters or barns, resting within the sites northern boundary line. A small orchard or forest is recorded within the sites southern boundary, extending east beyond the site reaching <i>Adams Farm</i> , located due east of the site. Two small structures, likely farmhouses, are also recorded south of the site adjacent its boundary line. Post- war OS mapping indicates the site to be situated partially atop the disused grounds of a former <i>Airfield</i> , whose runway strips are clearly visible immediately adjacent the site. Within the site, access roads to these runways are present, and a series of new structures immediately north of the site are now present. Two large structures, possibly aircraft hangars, suggests the operation of aircraft atop runway access roads within the site boundary.
Was the area subject to bombing during WWII?	During WWII, the site was situated within the Rural District of Market Harborough, which sustained an overall very low density of bombing according to Home Office bombing statistics. These statistics indicate the District to have suffered a total of 83 HE bomb incidents, culminating in a density of 1.8 HE bombs per 1,000 acres of the District.

ST LINE DEFENCE

	A single wartime bomb map, held in house, was immediately available which recorded bomb strikes and airplane crashes across Leicestershire. This source records several incidents of HE bombing south- west and north- west of the site- the exact positions of which could not be identified. This source also records over half a dozen instances of plane crashes having occurred in the immediate vicinity of the RAF Market Harborough. It is not clear from evidence available at this preliminary stage if any of these crashed planes fell within the site boundary, or if any such planes carried ordnance at the time of crashing which may have contaminated the crash site.
Is there any evidence of bomb damage on/close to the site?	While there is evidence of the removal of some structures within the site boundary in post- war OS mapping, they are considered likely to have been removed during the clearance of small farming structures prior to the construction of the adjacent airfield-not as a result of extensive bomb damage. Aerial photography of the site area was not available at this preliminary stage, which could allow for the identification of evidence of bomb damage such as damaged structures, or bomb craters in open areas.
To what degree would the site have been subject to access?	Given the nature of the sites eastern sector as largely occupied by the RAF Market Harborough, it is considered likely that access within and adjacent the airfield runways remained regular while the site was in use. However, open farmland occupying the sites western sector is likely to have seen significantly reduced access, perhaps limited to the temporary access by farmers tending the land therein. Access is considered to have been equally subjective across the site prior to the construction of the airfield, when the entire site is recorded to have encompassed open farmland.
To what degree has the site been developed post-WWII?	Post- war, the site appears to have undergone minimal development works. Much of the grounds of the airfield, including the runway strips and structures due north of the site are understood to have been removed. While some evidence remains of the runway access roads on site, any concrete or paving therein appears to have been removed, and some minor landscaping works are believed to have taken place to the remaining soft- ground within the site area. Any wartime farming structures within the site are also understood to have been removed.
What is the nature and extent of the intrusive works proposed?	The nature and extent of works proposed was not available at the time of writing.

Summary and Conclusions

During WWII, the site was situated within the Rural District of Market Harborough, which sustained an overall very low density of bombing according to Home Office bombing statistics. These statistics indicate the District to have suffered a total of 83 HE bomb incidents, culminating in a density of 1.8 HE bombs per 1,000 acres of the District.

A single bomb census map of Leicestershire was immediately available, which did not record bomb strikes directly atop the RAF Market Harborough, a military airfield which began construction in 1942. This mapping does record HE bombing south- west and north- west of the site, as well as over a half dozen instances of aircraft crashes immediately adjacent the airfield, possibly atop or immediately adjacent to the site boundary. The exact position of these bomb strikes or plane crashes could not be determined at this preliminary stage. It should be noted that due to the recorded presence of RAF Bomber Command at the adjacent airfield, it is possible that ordnance such as bombs or ammunition for defensive emplacements could have been stored on site, and warrant further research.

Recommendations

Given the findings of this preliminary report, it is recommended that further research is undertaken in the form of a Detailed UXO Risk Assessment. Further Research would allow for the acquisition of any additional records such as local bomb reports, incident reports of local plane crashes, histories of any defensive emplacements or ordnance storage sites within the airfield, the usage and possible presence of explosive bombs associated with the RAF Market Harborough, and high-resolution aerial photography which may help to indicate any evidence of bomb damage in the vicinity of the site.

Prior to or in lieu of a Detailed Assessment, it is recommended that appropriate UXO Risk Mitigation Measures are provided for intrusive works proposed.

If the client has any anecdotal or empirical evidence of UXO risk on site, please contact 1st Line Defence.

Appendix D Exploratory Hole Records

INFORMATION GENERALLY RELATING TO ALL EXPLORATORY HOLE RECORDS

GENERAL

Borehole/Trial Pit No

The exploratory hole identity number used throughout the report.

Site

The ground investigation project name.

Client

Client's name responsible for funding the ground investigation project.

Ground Level and Location

The precise ground level in meters above Ordnance Datum at the exploratory hole location from which the reduced level for each stratigraphic boundary is calculated. The exploratory hole position is given as either national grid-coordinates or local grid as specified.

ABBREVIATIONS

Samples

- **B** Bulk disturbed sample generally representative of the soil type for cohesive and fine granular soils.
- BRE Sample taken for electrochemical testing
- C Core soil samples
- **D** Small disturbed tub sample normally taken at intermediate depth between other sampling or testing operations. The sample is stored in an airtight container.
- **ES** Sample of potentially contaminated materials.
- P Piston Sample
- PF An attempted but failed piston sample
- **U** 100mm diameter undisturbed thick-walled sample (OS-TK/W)
- UT 100mm diameter undisturbed thin walled sample (OS-T/W)
- **UF/UTF** An attempted but failed 100mm undisturbed sample.
- W Water sample.

In-situ Testing

- **CBR** California Bearing Ratio mould sample or test.
- SPT Standard Penetration Test (SPT) using the split barrel sampler (shoe). The corresponding 'N' value is given in the test result column.
- SWPen Self-Weight Penetration
- PID On Site Volatile Headspace Testing by Photo Ionisation Detector
- HVP Hand Shear Vane test

Rock Quality and Core Recovery

- TCR Total core recovery The length of the recovered core expressed as a percentage of the length of core run.
- SCR Solid Core Recovery The sum length of all core pieces (measured along the centre of the core), expressed as a percentage of the length core run.
- RQD Rock Quality Designation- The sum length of all core pieces that are 100mm or longer (measured along the centre of the core), expressed as a percentage of the length of core run.
- **FI** Fracture Index- The number of fractures per 1000mm length of solid core.
- NI Non-intact- The material recovered in a non-intact state.
- NR No recovery from the core run.
- AZCL Assessed Zone of Core Loss.

Cobble Content

Low <10%, medium 10 – 20%, high >20%

Exploratory Hole Log Legend

Monitoring Installation Legend:

NB Where strata consists of material of more than one soil or rock type the legends are appropriately combined.

Dunelm Geotechnical & Environmental Ltd Foundation House, St John's Road, Meadowfield Durham, DH78TZ Tel: 0191 378 3151 Fax: 0191 378 3157 e-mail: admin@dunelm.co.uk web: www.dunelm.co.uk

	DUNE OTECHNICAL & ENVIR		i ii n	BOREHOLE	Borehole WS01					
Contra	ct No: D10	208	Site: Gartre	ee 2			GL (m AO 109.35 Easting: 470511.70	D) { N D) 2	Scale 1:50 lorthing: 88499.40	
Client:	Pick Evera	rd	I		Driller: RE	Logged By: RA	Sheet 1 of	f1		
Method	: Windowle	ess Sampling			Checked By: BL		Dates:	11/11/2020)	
	SAMPLE	E DETAILS	3) ater							
Туре	Depth From-To (m)	Insitu Testing	(Casin Groundw		AIA RECORD Description		Depth (m)	Level (m AOD)	Legend	Well/ Backfill
D ES B	0.10 0.10 0.40 0.50	HVP=120 kPa		Brown, slightly sandy, slig Gravel is subangular to su sandstone and siltstone. F Very stiff, orangish brown, high plasticity.	htly gravelly, claye Ibangular, fine to c Rootlets noted. mottled grey, sligh	y TOPSOIL. oarse of ntly sandy CLAY of	(0.30) 0.30 (0.65)	109.05		
SPT (S)	1.20 - 1.65	N=12 (2,3/3,2,3,4)	- 1 - Dry	Very stiff grey mottled ora CLAY. Gravel is angular fi Formation).	nge brown slightly ne to coarse of silt	sandy gravelly stone. (Dyrham	0.95 	108.40		
D SPT (S)	2.00 - 2.45	N=26 (5,6/5,6,7,8)	- - - 2 Dry				(1.35)			
D	2.50			Very stiff grey mottled ora CLAY. Gravel is angular fi Formation)	nge brown slightly ne to coarse of silt	sandy gravelly stone. (Dyrham	2.30	107.05		
SPT (S)	2.90 - 3.02	N=50+ (25 for 20mm/26,24 20mm)	\$ for Dry - 311/11/2020 1700 (0.00) Dry	End o	f Borehole at 3.01 m			106.34		
			-4							
Depth Struck Ca (m)	Ground Wate asing Depth (m) Water Le	er (m) vel Minutes Water sealed (m)	- 9 - 9 - 10 	Ata Casing Depths Time (hr) Diameter (mm) Depth (m) Di	Hole Diameter Ge ameter Depth (m) 1.1 (mm) 3.1	neral Remarks Hand dug inspection No groundwater end Borehole terminated	n pit to 1.2 countered.	0m. on encour	ntering ha	rd strata.

	DUNE OTECHNICAL & ENVIR	TION	BOREHOLE RECORD							Bore WS	hole 602			
Contra	ct No: D10	0208	Si	i te: Gar	tree 2						GL (m AO 107.48 Easting: 470432.90	D) 5 N D 2	Scale 1:50 lorthing: 88521.70	
Client:	Pick Evera	rd						Drille	er: RE	Logged By:	Sheet 1 of	f 1		
Method	: Windowle	ess Sampling						Cheo	ked By:	BL	Dates:	12/11/2020)	
	SAMPLE	E DETAILS		g) ater						_				
Туре	Depth From-To (m)	Insitu Testing	9	(Casin Groundw			3	Descr	iption	D	Depth (m)	Level (m AOD)	Legend	Well/ Backfill
D ES	0.10 0.10		-		Bro Gra sar	own, slightl avel is sub ndstone an	y sandy, angular to d siltston	slightly g o subang e. Rootle	ravelly, cl ular, fine ts noted.	ayey TOPSOIL. to medium of	(0.65)			
B D	0.70 0.80 - 1.00 0.80	HVP=120 kPa	- 1		Ve of I	ry stiff, ora nigh plastio	angish bro sity.	own, mott	led grey,	slightly sandy, CLAY	0.65 	106.83		
SPT (S)	1.20 - 1.65	SWPen=375mm N=1 (/,1	1)	Dry							- (1.30)			
D	1.50		-											
SPT (S)	2.00 - 2.45	SWPen=300mm N=5 (/,2	2,3) - 2	Dry	Fin	m, thinly la	minated,	grey, silt	/ CLAY.			105.53		
D	2.50		-											
SPT (S)	3.00 - 3.45	SWPen=225mm N=7 (/,1	1,4,2) - 3	Dry							(2.03) 			
D	3.50		-								-			
SPT (S)	4.00 - 4.45	SWPen=150mm N=20 (/	2,4,7,7) 4	Dry	Ve CL Fo	ry stiff grey AY. Gravel rmation).	r mottled is angula	orange b ar fine to	rown slig coarse of	htly sandy gravelly f siltstone. (Dyrham		103.50		
D	4.50		-			,					(1.40)			
SPT (S)	5.00 - 5.38	N=50+ (10,11/13,15,18,4 10mm)	l for - 5	Dry	700		E	nd of Boreh	ole at 5.38	m	 	102.10		
				(0.00) Diy							-			
											-			
			- 7								- - - -			
			:								-			
			- 8								-			
											-			
			- 9								-			
											-			
	Ground Wate	er (m)	1(0 elling / Hard S	Strata	Casing	Depths	Hole D	iameter	General Remarks				
Depth StruckCa (m)	asing Depth (m) Water Le	Wel Minutes Water sealed (m)	From (m)	To (m)	Time (hr)	Diameter (mm)	Depth (m)	Diameter (mm) 87 77 67	Depth (m) 2.00 4.00 5.38	1. Hand dug inspection 2. No groundwater er	on pit to 1.2 ncountered.	0m.		

	DUNE	ion ion	BOREHOLE RECORD							Borehole WS03				
Contra	ct No: D10	0208	Si	i te : Gar	tree 2						GL (m AOI 110.14 Easting: 470558.50	D) § N 0 2	Scale 1:50 Iorthing: 88527.80	
Client:	Pick Evera	rd						Drille	er: RE	Logged By: RA	Sheet 1 of	1		
Method	: Windowle	ess Sampling						Cheo	ked By: I	BL	Dates:	11/11/2020)	
Туре	Depth From-To (m)	Insitu Testing	3	(Casing) Groundwate			S	TRATA I Descr	RECOR iption	D	Depth (m)	Level (m AOD)	Legend	Well/ Backfill
D ES	0.10 0.10				Bi G sa	rown, slight ravel is sub indstone ar	ly sandy, angular to nd siltston	slightly gr o subangr e. Rootle	avelly, cl ular, fine ts noted.	ayey TOPSOIL. to coarse of	(0.52)			
B D	0.70 - 0.80 0.70				Ve C Fe	ery stiff grey _AY. Grave ormation).	/ mottled is angula	orange bi ar fine to o	rown sligl coarse of	htly sandy gravelly siltstone. (Dyrham	0.52	109.62		
SPT (S)	1.20 - 1.65	N=12 (2,3/3,2,3,4)	- 1	Dry							(1.33)			
SPT (S)	1.50 - 1.85	N=50+ (10,15/16,18,16 fe	r or	Dry										
		54mm)		,										
			_ 1 - 2	11/11/2020 1 (0.00) Dry	700		E	nd of Boreh	ole at 1.85 i	m	1.85 	108.29	<u></u>	
											Ę			
			-											
			- 3								-			
											Ē			
			-											
											E			
			-								F			
			-								Ē			
											E			
			- 5								-			
											Ē			
			-											
											-			
			- 6								-			
			-								-			
											E F			
			-7											
											-			
											F			
			- 8											
											-			
			ļ								Ę			
			9								È.			
											E			
			ŀ								F			
			ļ								Ē			
	Ground Wate	er (m)	10 Chise	0 elling / Hard	Strata	Casino	Depths	Hole D	iameter	General Remarks				
Depth Struck C (m)	asing Depth (m) Water Le	vel Minutes Water sealed (m)	From (m)	To (m)	Time (hr	Diameter (mm)	Depth (m)	Diameter (mm)	Depth (m)	1. Hand dug inspectio	n pit to 1.2	0m.		
										3. Borehole terminate	d at 1.85m	on encou	ntering ha	rd strata.
Log last up	dated 03/09/202	1												

Contract No: D10208 Site: Gart Client: Pick Everard Method: Windowless Sampling Method: Windowless Sampling Insitu Testing Image: Client Stress Sampling Type Depth From-To (m) Insitu Testing Image: Client Stress Sampling ES 0.10 Insitu Testing Image: Client Stress Sampling B 0.50 HVP=120 kPa Image: Client Stress Sampling SPT (S) 1.20 - 1.65 N=12 (3,3/3,3,3,3) Image: Client Stress Sampling D 1.50 Image: Client Stress Sampling Image: Client Stress Sampling	Priller: RE Logged By: Checked By: BL STRATA RECORD Description Brown, slightly sandy, slightly gravelly, clayey TOPSOIL. Gravel is subangular to subangular, fine to coarse of chalk. Rootlets noted. Very stiff, orange brown, mottled grey, slightly sandy, slightly gravelly CLAY. Gravel is angular to subangular, fine to coarse of sandstone and siltstone. Very stiff grey mottled orange brown slightly sandy gravelly CLAY. Gravel is angular fine to coarse of siltstone. (Dyrham Formation). Very stiff grey mottled orange brown slightly sandy gravelly CLAY. Gravel is angular fine to coarse of siltstone. (Dyrham Formation).	GL (m AO 109.21 Easting: 470483.10 Dates: Depth (m) - (0.45) - 0.45 - (1.25) - 1.70 (1.40) (1.40)	D) <u>8</u> <u>2</u> f1 12/11/2020 (m AOD) 108.76	Scale 1:50 Northing: 255627.90	Well/ Backfill
Client: Pick Everard Method: Windowless Sampling SAMPLE DETAILS Type Depth From-To (m) Insitu Testing Depth 9:000 ES 0.10	Driller: RE Logged By: Checked By: BL STRATA RECORD Description Brown, slightly sandy, slightly gravelly, clayey TOPSOIL. Gravel is subangular to subangular, fine to coarse of chalk. Rootlets noted. Very stiff, orange brown, mottled grey, slightly sandy, slightly gravelly CLAY. Gravel is angular to subangular, fine to coarse of sandstone and siltstone. Very stiff grey mottled orange brown slightly sandy gravelly CLAY. Gravel is angular fine to coarse of siltstone. (Dyrham Formation). Very stiff grey mottled orange brown slightly sandy gravelly CLAY. Gravel is angular fine to coarse of siltstone. (Dyrham Formation).	Sheet 1 of Dates: Depth (m) (0.45) (0.45) (1.25) (1.25) (1.25) (1.26) (1.26) (1.26) (1.26) (1.26) (1.26) (1.27) (1.27) (1.27) (1.26) (1.27) (1	f 1 12/11/2020 (m AOD) 108.76 107.51		Well/ Backfill
Method: Windowless Sampling SAMPLE DETAILS Type Depth From-To (m) Insitu Testing Use of the second	Checked By: BL STRATA RECORD Description Brown, slightly sandy, slightly gravelly, clayey TOPSOIL. Gravel is subangular to subangular, fine to coarse of chalk. Rootlets noted. Very stiff, orange brown, mottled grey, slightly sandy, slightly gravelly CLAY. Gravel is angular to subangular, fine to coarse of sandstone and siltstone. Very stiff grey mottled orange brown slightly sandy gravelly CLAY. Gravel is angular fine to coarse of siltstone. (Dyrham Formation). Very stiff grey mottled orange brown slightly sandy gravelly CLAY. Gravel is angular fine to coarse of siltstone. (Dyrham Formation).	Dates:	12/11/2020 (m AOD) 108.76	0 Legend	Well/ Backfill
SAMPLE DETAILS Type Depth From-To (m) Insitu Testing Depth 9000 ES 0.10	STRATA RECORD Description Brown, slightly sandy, slightly gravelly, clayey TOPSOIL. Gravel is subangular to subangular, fine to coarse of chalk. Rootlets noted. Very stiff, orange brown, mottled grey, slightly sandy, slightly gravelly CLAY. Gravel is angular to subangular, fine to coarse of sandstone and siltstone. Very stiff grey mottled orange brown slightly sandy gravelly CLAY. Gravel is angular fine to coarse of siltstone. (Dyrham Formation). Very stiff grey mottled orange brown slightly sandy gravelly CLAY. Gravel is angular fine to coarse of siltstone. (Dyrham Formation).	Depth (m)	Level (m AOD) 108.76		Well/ Backfill
ES 0.10 B 0.50 B 0.60 - 0.70 HVP=120 kPa -1 SPT (S) 1.20 - 1.65 N=12 (3,3/3,3,3) D 1.50	Brown, slightly sandy, slightly gravelly, clayey TOPSOIL. Gravel is subangular to subangular, fine to coarse of chalk. Rootlets noted. Very stiff, orange brown, mottled grey, slightly sandy, slightly gravelly CLAY. Gravel is angular to subangular, fine to coarse of sandstone and siltstone. Very stiff grey mottled orange brown slightly sandy gravelly CLAY. Gravel is angular fine to coarse of siltstone. (Dyrham Formation). Very stiff grey mottled orange brown slightly sandy gravelly CLAY. Gravel is angular fine to coarse of siltstone. (Dyrham Formation).	(0.45) 0.45 (1.25) 1.70 (1.40)	108.76		
SPT (S) 1.20 - 1.65 N=12 (3,3/3,3,3,3) Dry	Very stiff grey mottled orange brown slightly sandy gravelly CLAY. Gravel is angular fine to coarse of siltstone. (Dyrham Formation).	(1.25) 1.70 (1.40)	107.51		
D 1.50	Very stiff grey mottled orange brown slightly sandy gravelly CLAY. Gravel is angular fine to coarse of siltstone. (Dyrham Formation).	1.70 (1.40)	107.51		
SPT (S) 2.00 - 2.45 N=36 (4,6/8,9,9,10) 2 Dry	Very stiff grey mottled orange brown slightly sandy gravelly CLAY. Gravel is angular fine to coarse of siltstone. (Dyrham	(1.40) 			
D 2.50	Very stiff grey mottled orange brown slightly sandy gravelly CLAY. Gravel is angular fine to coarse of siltstone. (Dyrham	<u> </u>			
SPT (S) 3.00 - 3.45 N=40 (5,6/7,9,11,13) - 3 Dry	romation).	3.10	106.11		
SPT (S) 4.00 - 4.45 N=39 (6,6/9,8,9,13) - 4 Dry		(1.35) 			
12/11/2020 170 (0.00) Dry 5 6 7 8 9 10 Ground Water (m) Chiselling / Hard St	Trata Casing Depths Hole Diameter General Remarks		104.76		
Depth Struck Casing Depth (m) Water Level Minutes Water sealed (m) From (m) To (m) Log last updated 03/09/2021	Time (hr) Diameter (mm) Depth (m) Diameter (mm) Depth (m) 87 2.00 77 4.00	on pit to 1.2 ncountered. ed at 4.45m	on encou	ntering ha	rd strata.

	DUNEL OTECHNICAL & ENVIRO	NMENTAL PSSOCI	RILLIA TION	BOREHOLE RECORD		Borehole WS05			
Contra Client:	ct No: D102	208 d	Site: Gartro	ee 2 Driller: RE Logged By: F	GL (m AO 111.21 Easting: 470622.3(RA Sheet 1 o	GL (m AOD) Scale 1:50 111.21 Scale 1:50 Easting: Northing: 470622.30 288579.70 Sheet 1 of 1			
Method	: Windowle	ss Sampling		Checked By: BL	Dates:	11/11/2020)		
	SAMPLE	DETAILS	te	- ,					
Туре	Depth From-To (m)	Insitu Testin	6 (Casing Groundwar	STRATA RECORD Description	Depth (m)	Level (m AOD)	Legend	Well/ Backfill	
D ES D B	0.10 0.40 0.50 - 0.70		11/11/2020 1700 (0.00) Dry -1 -2 -2 -3 -3 -3 -3 -5 -6 -6 -7 -7 -7 -8	Orangish brown, slightly sandy, slightly gravelly, clayey TOPSOIL. Gravel is subangular to subangular, fine to coar of sandstone and siltstone. Rootlets noted. Very stiff grey motified orange brown slightly sandy gravelly CLAY. Gravel is angular fine to coarse of siltstone. (Dyrhan Formation). End of Borehole at 0.71 m	Se (0.30) (0.41) 1 0.71 - 0.71 	110.91 110.50			
			ŀ		F				
Depth Struck C (m)	Ground Water asing Depth (m) Water Lev	r (m) el Minutes Water sealed (m)	10 Chiselling / Hard Str. From (m) To (m)	tta Casing Depths Hole Diameter General Remark Time (hr) Diameter (mm) Depth (m) Diameter (mm) Depth (m) 1. Hand dug inspr 2. No groundwate 3. Borehole termi	s ection pit to 0.7 r encountered. nated at 0.71m	1m. on encour	ntering ha	ard strata.	

	DUNE OTECHNICAL & ENVIR	RILLING	BOREHOLE RECORD							Borehole WS06						
Contra	ct No: D10)208	Sit	te: Gartro	ee 2								GL (m AOI 110.36 Easting: 470535.00	D) 5 N 0 2	Scale 1:50 lorthing: 88635.50	
Client:	Pick Evera	rd	i					Drill	er: RE	L	ogged B	y:	Sheet 1 of	1		
Method	: Windowl	ess Sampling			_			Che	cked By: I	BL			Dates:	12/11/2020)	
	SAMPLE	E DETAILS		g) /ater			0			~						
Туре	Depth From-To (m)	Insitu Testin	g	(Casin Groundw			5	Desci	ription	D			Depth (m)	Level (m AOD)	Legend	Well/ Backfill
ES	0.10				Brow Grav siltste	vn, slightl vel is sub one. Roc	y sandy, s angular to otlets note	slightly g o subang d.	ravelly, cla jular, fine t	ayey T to med	OPSOIL lium of		(0.45)	109.92		
B D	0.50 0.60 - 0.80 0.60	HVP=120 kPa	-		Very CLA Form	stiff grey Y. Gravel nation).	mottled of is angula	orange b ar fine to	rown sligł coarse of	htly sar siltsto	ndy grav ne. (Dyrl	elly nam		100.02		
SPT (S)	1.00 - 1.45	N=46 (7,7/8,12,12,14)	- 1	Dry									 			
D	1.50		-										-			
SPT (S)	1.80 - 2.19	N=50+ (8,10/12,14,16,8 20mm)	for -2	Dry									-			
			12	2/11/2020 1700 (0.00) Dry			En	nd of Boreł	iole at 2.19 i	m			2.19	108.18		
			-										-			
			- 3										 			
													- - -			
			- 4													
													-			
			- - - -													
			- 5													
			-										-			
			- 6										- - -			
			-													
			: - 7										- - -			
			-													
			- 8										-			
			-													
			-9													
			-													
<u> </u>	Ground Wet	er (m)		ling / Hard Star	ata	Casina	Depths	Holo)iameter	Gara	ral Dom	arko				
Depth Struck Ca	asing Depth (m) Water Le	evel Minutes Water sealed	From (m)	To (m)	Time (hr)	Diameter	Depth (m)	Diameter	Depth (m)	1. Har	nd dug ir	arks nspection	n pit to 1.20	0m.		
						(1111)		87	2.00	2. No 3. Bor	groundv ehole te	vater en rminateo	countered. d at 2.19m	on encour	ntering ha	rd strata.
Log last upo	dated 03/09/202	21														

	DUNE OTECHNICAL & ENVIR	LIM SALASH DRACH	,	BOREHOLE RECORD	Borehole WS07				
Contra	ct No: D10	0208	Site: Gartre	ee 2	GL (m AO 114.62 Easting: 470122.40	D) (1	Scale 1:50 lorthing: 88681.20		
Method	: Windowl	ess Sampling		Checked By: BL	Dates:	10/11/2020)		
	SAMPLE	E DETAILS	ter						
Туре	Depth From-To (m)	Insitu Testing	(Casing Groundwa	STRATA RECORD Description	Depth (m)	Level (m AOD)	Legend	Well/ Backfill	
D ES	0.10 0.10			Brown, slightly sandy, slightly gravelly, clayey TOPSOIL. Gravel is angular to subangular, fine of coal. Rootlets noted.	- (0.40)				
В	0.50			Firm orange brown, mottled grey and brown, slightly sandy, slightly gravelly CLAY of high plasticity. Gravel is angular to subangular, fine to medium of coal.	0.40	114.22			
SPT (S) D	1.20 - 1.65 1.50	N=6 (1,1/1,1,2,2)	- 1 Dry	Very stiff grey mottled orange brown slightly sandy gravelly CLAY. Gravel is angular fine to coarse of siltstone. (Dyrham Formation).	1.10	113.52			
U	1.00			1.70m to 1.73m: Dark brown, slightly sandy GRAVEL. Gravel is angular, fine to	(1.30)				
SPT (S)	2.00 - 2.45	N=18 (2,2/3,4,5,6)	2 Dry	meaium or muastone.	-				
D	2.50			Very stiff grey mottled orange brown slightly sandy gravelly CLAY. Gravel is angular fine to coarse of siltstone. (Dyrham Formation).	2.40	112.22			
SPT (S)	3.00 - 3.45	N=22 (3,4/4,5,6,7)	- 3 Dry	Very stiff grey mottled orange brown slightly sandy gravelly CLAY. Gravel is angular fine to coarse of siltstone. (Dyrham Formation).	2.95 	111.67			
D	3.50				 (1.49)				
SPT (S)	4.00 - 4.44	N=50+ (5,8/9,10,12,19 for 70	mm) – 4 Dry						
	Ground Wet		6 6 7 7 9 9						
Depth Struck Ca (m)	Ground Wat asing Depth (m)	er (m) evel Minutes Water sealed (m) Fro	m (m) To (m)	ata Casing Uepths Hole Diameter General Remarks Time (hr) Diameter (mm) Depth (m) Diameter (mm) Depth (m) Depth (m) 1. Hand dug inspection 87 2.00 3. Borehole terminate 3. Borehole terminate	on pit to 1.2 acountered. ed at 4.44m	0m. on encou	ntering ha	rd strata.	
Log last up	dated 03/09/202	21					-		

	DUNE OTECHNICAL & ENVIR		on	BOREHOLE RECORD								Borehole WS08			
Contra	ct No: D10	0208	Site: Gar	tree 2					GL (m AO 114.46 Easting: 470784.90	D) { N D 2	Scale 1:50 Northing: 188722.20				
Client:	Pick Evera	rd				Drille	r: RE	Logged By: RA	A Sheet 1 of	f 1					
Method	: Windowle	ess Sampling				Chec	ked By: E	3L	Dates:	11/11/2020)				
	SAMPLE	E DETAILS	te												
Туре	Depth From-To (m)	Insitu Testing	(Casing Groundwa		S	TRATA I Descri	RECORI	D	Depth (m)	Level (m AOD)	Legend	Well/ Backfill			
D ES D	0.10 0.10 0.40 0.40 0.50 0.70	HVP=120 kPa		Orangish b TOPSOIL. of sandstor Very stiff, o	rown, slight Gravel is su ne and siltst range brow	tly sandy, ubangular tone. Roo m, mottleo	slightly g to suban tlets note d grey and	ravelly, clayey gular, fine to coarse d. d brown, slightly	e (0.30) 0.30 (0.40)	114.16					
			- 1	Very stiff gr CLAY. Grav Formation).	ey mottled vel is angula	orange bi ar fine to d	own sligh coarse of	ntly sandy gravelly siltstone. (Dyrham	0.70 	113.76					
SPT (S) D	1.20 - 1.65 1.50	N=33 (6,5/4,3,16,10)	- Dry -	<u>1.40m to 1.44</u>	m: Medium str	ong, grey SIL	.TSTONE.		(1.41)						
SPT (S)	1.80 - 2.10	N=49 (12,13 for 40mm/16	(,18,15) Dry						-						
			- 11/11/2020 170 (0.00) Dry	00	E	nd of Boreh	ole at 2.11 r	n	2.11	112.35	<u></u>				
			- 3												
			- 4												
			5												
			- 6												
			- 7												
			- 8												
			- 9												
ļ	Ground Wate	er (m)	10 Chiselling / Hard S	trata Casi	ng Depths	Hole Di	ameter	General Remarke				1			
Depth Struck Ca (m)	asing Depth (m)	vel Minutes Water sealed (m)	From (m) To (m)	Time (hr) Diamete (mm)	Depth (m)	Diameter (mm)	Depth (m)	1. Hand dug inspec 2. No groundwater 3. Borehole termina	ction pit to 1.2 encountered. ated at 2.11m	0m. on encour	ntering ha	rd strata.			
Log last upo	dated 03/09/202														

	COUNELM BEDTECHNICAL & ENVIRONMENTAL		RILLIA ATION	BORE	HOLI	E RE	CORE	D		Bore WS	hole 609	
Contra	ct No : D10	0208	Site: Gartre	e 2					GL (m AOI 112.98 Easting: 470693.20	D) § N 1 2	Scale 1:50 Iorthing: 88735.30	
Client:	Pick Evera	rd				Drille	r: RE	Logged By:	Sheet 1 of	1		
Method	I: Windowle	ess Sampling				Chec	ked By: B	L	Dates:	12/11/2020)	
	SAMPLE	E DETAILS	3) ater					_				
Туре	Depth From-To (m)	Insitu Testir	Groundw Groundw		S	Descri	ption)	Depth (m)	Level (m AOD)	Legend	Well/ Backfill
D ES	0.10 0.10			Brown, slight Gravel is sub noted.	ly sandy, s bangular, fi	slightly gr ine to coa	avelly, cla irse of silts	yey TOPSOIL. stone. Rootlets	- (0.38) - 0.38	112.60		
B D	0.50 - 0.70 0.50 0.60	HVP=120 kPa	- - 12/11/2020 1700	Very stiff grey CLAY. Grave Formation).	y mottled o I is angula	orange br ir fine to c	own slight	tly sandy gravelly siltstone. (Dyrham	0.80	112.18		
			- (0.00) Dry - 1 		En	d of Borehc	ole at 0.80 m	1				
			-3									
			- 5									
			- 6									
			- 7									
			- 8									
			- 9									
Dopth Start	Ground Wate	er (m)	Chiselling / Hard Stra	ta Casing	g Depths	Hole Di	ameter (General Remarks		0		
Uepth StruckC (m)	asıng Depth (m) 	vel Minutes Water sealed (m)	From (m) To (m) 1	īme (hr) Diameter (mm)	Depth (m)	Uiameter (mm)	Depth (m)	 Hand dug inspective No groundwater Borehole termination 	ction pit to 0.8 encountered. ated at 0.80m	um. on encoui	ntering ha	rd strata.
Log last up	dated 03/09/202	!1										

	COUNCIL & ENVIRONMENTAL				BORE	HOL	E RE	COR	D		Bore WS	hole 610	
Contra	ct No: D10)208	Site:	Gartre	e 2					GL (m AO 106.50 Easting: 470434.60	D) { N D 2	Scale 1:50 lorthing: :88730.80	
Client:	Pick Evera	rd					Drille	er: RE	Logged By: RA	Sheet 1 of	f1		
Method	: Windowle	ess Sampling					Cheo	cked By: I	BL	Dates:	10/11/202	0	
	SAMPLE	E DETAILS		ng) vater		c	ΤΡΛΤΛ		П	Danth	Laval		Mall/
Туре	Depth From-To (m)	Insitu Testing		(Casir Groundy	_		Descr	iption		(m)	(m AOD)	Legend	Backfill
D ES	0.10 0.10				Brown, slight Gravel is ang	ly sandy, Jular to su	slightly gi Ibangular	ravelly, cl , fine of c	ayey TOPSOIL. oal. Root and rootlets	; (0.40)			
в	0.50 - 0.70				noted. Firm orange slightly grave angular to su	brown, m lly CLAY bangular,	ottled gre of interme fine to m	y and bro ediate pla edium of	own, slightly sandy, asticity. Gravel is coal.	0.40	106.10		
SPT (S)	1.20 - 1.65		- 1	Drv						 			
D D	1.50			biy	Very stiff grey	y mottled	orange b	rown sligi	htly sandy gravelly	1.30	105.20		
D	1.50				CLAY. Grave Formation).	l is angula	ar fine to	coarse of	siltstone. (Dyrham	(0.65)			
SPT (S)	2.00 - 2.45	N=15 (2,2/2,3,5,5)	-2	Dry	Very stiff area	mottled	orange h	rown slial	htly sandy gravelly	1.95	104.55		
			-	,	CLAY. Grave	l is angula	ar fine to	coarse of	siltstone. (Dyrham	(0.35)	104 20	· · · · · · · · · · · · · · · · · · ·	
D	2.50		-		Very stiff grey CLAY. Grave Formation).	y mottled I is angula	orange b ar fine to	rown sligl coarse of	htly sandy gravelly siltstone. (Dyrham		104.20		
SPT (S)	3.00 - 3.45	N=37 (4,5/6,8,10,13)	- 3	Dry						-			
										F			
D	3.50		-										
										(3.14)			
SPT (S)	4.00 - 4.45	N=32 (4,5/6,7,10,9)	- 4	Dry									
D	4.50		-							-			
										E			
SPT (S)	5.00 - 5.44	N=50+ (5,7/7,9,15,19 for 60m	m) - 5	Dry						-			
			10/11/2	2020 1700)0) Drv		E	nd of Boreh	ole at 5.44	m	5.44	101.06		
				, ,						-			
			6							<u> </u>			
										-			
			-										
										E			
			- 7							-			
										E			
			-							E			
										_			
			- 8										
										-			
										-			
			- 9							Ē			
										-			
										-			
			ļ										
			10										
Depth Struck C	Ground Wate	er (m)	Chiselling	Hard Strata	a Casing Diameter	Depths	Hole D Diameter	iameter	General Remarks	on pit to 1 ?	0m.		
(m) 0.90	(m) vvater Le	(m) From	10		(mm)	Dehni (m)	(mm) 87	2.00	2. No groundwater e	ncountered.	on encour	nterina ba	rd etrata
							67	4.00 5.00		ou at 0.4411		пенну на	i a sudid.
Log last up	l dated 03/09/202	21											

	DUNE OTECHNICAL & ENVIR	LIM SUTION B	TION		BORE	HOL	E RE	CORI	D				Bore WS	hole 611	
Contra	ct No: D10)208	Site:	Gartree	e 2							GL (m AOI 108.05 Easting: 470353.00	D) 5 N 0 2	Scale 1:50 lorthing: 88770.50	
Client:	Pick Evera	rd					Drille	er: RE	L	ogged B	y: RA	Sheet 1 of	1		
Method	: Windowle	ess Sampling		<u> </u>			Chec	ked By: E	3L			Dates:	11/11/2020)	
Туре	Depth From-To (m)	Insitu Testin	g	(Casing) Groundwate		S	TRATA I Descri	RECORI	D			Depth (m)	Level (m AOD)	Legend	Well/ Backfill
D ES	0.10 0.10			-	Orangish brov TOPSOIL. Gr Rootlets note	wn, slight avel is ar d.	ly sandy, igular to s	slightly gi subangula	ravelly ar, fine	, clayey of coal.		(0.42)	407.00		
В	0.50 - 0.70				Stiff orange b slightly grave subangular, fi	rown, mo lly, CLAY ne to mee	ttled grey of high pl dium of c	v and brov lasticity. G oal.	wn, slig Gravel	ghtly san is angula	dy, ar to	- 0.42	107.63		
SPT (S)	1.00 1.20 - 1.65	HVP=88 kPa N=10 (1,1/2,2,3,3)	- 1	Dry								(1.03) 			
D	1.60		-		Very stiff grey CLAY. Gravel Formation).	mottled is angula	orange br ar fine to c	rown sligh coarse of	ntly sar siltstor	ndy grav ne. (Dyrł	elly nam	- 1.45 - (0.65)	106.60		
SPT (S)	2.00 - 2.45	N=22 (3,4/4,5,6,7)	-2	Dry	Very stiff grey CLAY. Gravel	mottled is angula	orange br ar fine to c	rown sligh coarse of	ntly sar siltstor	ndy grav ne. (Dyrł	elly nam	2.10	105.95		
D	2.50		-		Formation).							(1.33)			
SPT (S)	3.00 - 3.42	N=50+ (8,10/9,10,12,19 50mm)	for -3	Dry								- - -			
			11/11/ (0.)	2020 1700 00) Dry		Er	nd of Boreho	ole at 3.43 n	n				104.62	<u></u>	///////////////////////////////////////
			- 4									- - -			
			-									- - -			
			-5									- - -			
			-												
			- 6									- - -			
			-									-			
			- 7												
			-												
			- 8												
			- 9												
			-												
<u> </u>	Ground Wate	er (m)	10 Chiselling	/ Hard Strats	a Casing	Depths	Hole Di	iameter	Gene	ral Rom	arke				
Depth StruckC (m)	asing Depth (m) Water Le	evel Minutes Water sealed (m)	From (m) To	(m) Tin	ne (hr) Diameter (mm)	Depth (m)	Diameter (mm)	Depth (m)	1. Har 2. No 3. Bor	nd dug ir groundw ehole te	ispectio ater en rminate	n pit to 1.20 countered. d at 3.43m	0m. on encour	ntering ha	ard strata.
Log last up	dated 03/09/202	21													

	DUNE DTECHNICAL & ENVIR	LIM IONMENTAL	N	BORE	HOLE	ERE	COR	D		Bore WS	hole 612	
Contra	ct No: D10)208	Site: Gart	ree 2					GL (m AO 109.90 Easting: 470516.60	D) { N D) 2	Scale 1:50 lorthing: 88787.00	
Client:	Pick Evera	rd				Drille	r: RE	Logged By:	Sheet 1 of	f1		
Method	: Windowle	ess Sampling				Chec	ked By: I	3L	Dates:	13/11/2020)	
	SAMPLE	E DETAILS	g) /ater		ст			P				
Туре	Depth From-To (m)	Insitu Testing	(Casin Groundv		31	Descri	iption		(m)	(m AOD)	Legend	Backfill
D ES B D	0.10 0.10 0.50 0.60 - 0.80 0.60	HVP=120 kPa		MADE GROU topsoil. Grave concrete. Roo 0.40m: Angular cc Very stiff, oran slightly sandy,	ND: Light is subang ts and roc obble on conc gish brow CLAY of I	brown, s gular, fin otlets not crete noted (n, mottle high plas	sandy, sli le to coar ted. d grey a sticity. Ro	ghtly gravelly, clay se of sandstone and ind light brown, iotlets noted.	0.50	109.40		
SPT (S) D	1.20 - 1.65 1.50	SWPen=150mm N=4 (/1,1,	- 1 ,1,1) Dry	1.20m to 1.65m: N	lo recovery f	from SPT.						
SPT (S)	2.00 - 2.45	N=15 (2,2/3,4,4,4)	- <u>2</u> Dry						- (2.20) - - - - -			
D	2.50			Very stiff grey	mottled o	range bi	own sligi	ntly sandy gravelly	2.70	107.20		
SPT (S)	3.00 - 3.42	N=50+ (6,5/12,13,12,13 for 50mm)	r - 3 Dry 13/11/2020 170	CLAY. Gravel Formation).	is angular	fine to o	coarse of	siltstone. (Dyrham	(0.72) 	106.48		
			5									
			6									
			7									
			-8									
			- 9									
ļ	Ground W-t	er (m)	10 Chicolling / Hard S	trata Casina l	Denthe	Hole D	ametor	Conoral Domestic				
Depth StruckCa (m)	dated 03/09/202	Wel Minutes Water sealed (m)	From (m) To (m)	Time (hr) Diameter (mm)	Depth (m)	Diameter (mm) 87 77	Depth (m) 2.00 3.42	 Hand dug inspection No groundwater er Borehole terminate 	on pit to 1.2 acountered. ad at 3.42m	0m. on encou	ntering ha	rd strata.

COUNELM		BOREHOLE RECORD		Bore WS	hole 13	
Contract No: D10208	Site: Gartre	e 2	GL (m AOI 113.12 Easting: 470768.20	D) S N) 28	cale 1:50 orthing: 38786.40	
Client: Pick Everard		Driller: RE Logged By:	Sheet 1 of	1		
Method: Windowless Sampling		Checked By: BL	Dates:	12/11/2020		
SAMPLE DETAILS	rg) vater		Denth			M-11/
Type Depth From-To (m) Insitu Testing	(Casir Groundv	Description	(m)	(m AOD)	Legend	Backfill
D 0.10 ES 0.10		Brown, slightly sandy, slightly gravelly, clayey TOPSOIL. Gravel is subangular, fine to coarse of chalk and siltstone. Rootlets noted.	0.40	112.72		
B 0.50 - 0.70 D 0.50	- - - - -	Very stiff grey mottled orange brown slightly sandy gravell CLAY. Gravel is angular fine to coarse of siltstone. (Dyrha Formation).	/ - n - -			
SPT (S) 1.20 - 1.65 N=21 (3,4/5,4,5,7)	Dry		 (1.98)			
D 1.50	-		-			
SPT (S) 2.00 - 2.38 N=50+ (9,10/13,17,17,3 for 10mm)	- 2 Dry		-			
	12/11/2020 1700 (0.00) Dry	End of Borehole at 2.38 m	2.38	110.74	<u></u>	
	- 3		-			
	- - -		-			
	- 4		-			
			-			
	-					
	-5		-			
	- - -		-			
	-6		-			
	-		-			
	- 7					
	- - -		-			
	-8		-			
	-		-			
	- 9		-			
	-		-			
			F			
Ground Water (m) C	hiselling / Hard Strat	Casing Depths Hole Diameter General Remar	 (s			
Depth StruckCasing Depth (m) (m) Water Level Minutes Water sealed From (m	1) To (m) Ti	ne (hr) Diameter (mm) Depth (m) Diameter (mm) Depth (m) 1. Hand dug insj 2. No groundwal 3. Borehole term	ection pit to 1.2 er encountered. inated at 2.38m	0m. on encoun	tering ha	rd strata.
Log last updated 03/09/2021						

	CENTECHNICAL & ENVIRONMENTAL		10 M	BORE	HOLE	RECORI	כ		Bore WS	ehole 614	
Contract	t No: D10	1208	Site: Gartro	ee 2			Looped Du DA	GL (m AO 114.59 Easting: 470823.20	D)	Scale 1:50 Northing: 288758.20	
Mothod:	Windowl	ra ess Sampling				Driller: RE		Sheet 1 of	11/11/202	n	
Method.	SAMPLE	F DETAILS	ē			Checked by. L		Dates.			
Туре	Depth From-To (m)	Insitu Testing	(Casing) Groundwal		STR D	ATA RECORI)	Depth (m)	Level (m AOD)	Legend	Well/ Backfill
D ES D B SPT (S) D	0.10 0.10 0.50 0.70 - 0.80 1.20 - 1.55 1.40	HVP=120 kPa N=50+ (6,5/4,21,25 for 5	0mm) 11 Dry 11/11/2020 1700 (0.00) Dry 2 - - - - - - - - - - - - -	Orangish bro TOPSOIL. Gi <u>sandstone ar</u> Very stiff, ora Sandy, CLAY. Very stiff grey CLAY. Gravel Formation).	wn, slightly s ravel is subar <u>ad chalk. Roc</u> nge brown, r y mottled ora i is angular fi End o	andy, slightly gr ngular to rounde titets noted. nottled grey and nge brown sligh the to coarse of Borehole at 1.50 n	avelly, clayey ed, fine to coarse of d brown, slightly tly sandy gravelly siltstone. (Dyrham		114.19 113.99		
	Ground Wate	er (m)	10 Chiselling / Hard Stra	ata Casino	Depths	Hole Diameter	General Remarks				
Depth Struck Casi (m)	ing Depth (m) Water Le	vel Minutes Water sealed (m) I I	From (m) To (m)	Time (hr) Casing	Depth (m)	ameter mm) Depth (m)	 Hand dug inspection Hand dug inspection No groundwater er Borehole terminate 	on pit to 1.2 acountered. ad at 1.50m	0m. on encou	ntering ha	ard strata.

	DUNE		on	BORE	HOL	E RE	CORI	D			Bore WS	hole 615	
Contra	ct No: D10	0208	Site: Gartr	ee 2						GL (m AO 115.06 Easting: 470818.30	D) § N D 2	Scale 1:50 lorthing: 88830.40	
Client:	Pick Evera	rd				Drille	r: RE	L	ogged By: RA	Sheet 1 of	f 1		
Method	: Windowle	ess Sampling	1	-		Chec	ked By: E	3L		Dates:	11/11/2020)	
	SAMPLE	E DETAILS	ng) water		S	τράτα β	RECOR	n		Donth	Loval		Woll/
Туре	Depth From-To (m)	Insitu Testing	(Casi			Descri	ption			(m)	(m AOD)	Legend	Backfill
ES	0.10 0.10	HVP=120 kPa		Crangish bro clayey TOPS coarse of sar 0.30m: Ceramic	wn, mottle OIL. Grav Idstone al Iand drain no	ed grey, s vel is suba nd quartz ^{oted.}	iightiy sar angular to ite. Rootle	ndy, sl o round ets not	ghtly gravelly led, fine to ed.	/, (0.40) 0.40	114.66		
D	0.50		- 1	Very stiff, ora sandy, slightl angular to su	nge brow y gravelly bangular,	n, mottleo CLAY of fine to m	l grey and high plas edium of	d brow ticity. (coal a	n, slightly Gravel is nd sandstone	(0.70)			
SPT (S)	1.20 - 1.65	N=19 (1,3/4,4,5,6)	- Dry	Very stiff grey CLAY. Grave Formation).	/ mottled (is angula	orange br ar fine to c	own sligh coarse of	ntly sar siltstoi	ndy gravelly ne. (Dyrham	1.10 	113.96		
U	1.50			,						(1.01)			
SPT (S)	1.80 - 2.03	N=50+ (13,12 for 4mm/18 for 4mm)	19,13 Dry							-			
			(0.00) Dry		Er	nd of Boreho	ole at 2.11 n	n		2.11 	112.94		///////////////////////////////////////
										-			
			- 3							-			
			- - - -										
			- 4							-			
			-							-			
			- 5										
										-			
			- 6										
			- 7							-			
			-										
			- 8							-			
										-			
			-							-			
			-9							-			
Donth Starling	Ground Wate	er (m)	Chiselling / Hard Str	ata Casing	Depths	Hole Di	ameter	Gene	al Remarks			•	
(m)	(m) Water Le	wel Minutes (m)	From (m) To (m)	Time (hr) Diameter (mm)	Depth (m)	(mm)	Depth (m)	1. Har 2. No 3. Bor	ia aug inspec groundwater ehole termina	cuon pit to 1.2 encountered. ated at 2.11m	on encour	ntering ha	rd strata.
Log last up	dated 03/09/202	21											

	COUNELM BEDTECHNICAL & ENVIRONMENTAL			on on			BORE	HOL	E RE	COR	D		Bore WS	hole 616	
Contra	ct No : D10)208		S	Site: Ga	tree 2	2					GL (m AOI 112.92 Easting: 470635.70	D) 5 N 1 2	Scale 1:50 lorthing: 88801.80	
Client:	Pick Evera	rd							Drille	r: RE	Logged By:	Sheet 1 of	1		
Method	: Windowle	ess Sam	pling						Chec	ked By: I	3L	Dates:	12/11/2020)	
Туре	Depth From-To (m)	E DETAIL	S tu Testing		(Casing) Groundwater			S	TRATA I Descri	RECOR	D	Depth (m)	Level (m AOD)	Legend	Well/ Backfill
D ES	0.10 0.10					E	Brown, slightl Gravel is sub chalk. Rootle	y sandy, angular, f ts noted.	slightly gr ine to coa	avelly, cl arse of sil	ayey TOPSOIL. tstone and occasional	- (0.40) - 0.40	112.52		
B D	0.50 - 0.70 0.50			-) (Very stiff grey CLAY. Gravel Formation).	is angula	orange br ar fine to o	rown sligl coarse of	ntly sandy gravelly siltstone. (Dyrham				
SPT (S)	1.20 - 1.64	N=50+ (3,3/4,	14,16,16 for	60mm)	1 Dry							(1.24)			
					12/11/2020 1 (0.00) Dry	700		Er	nd of Boreho	ole at 1.64 i	n	1.64 	111.28		
					2										
					3										
				-											
				- 4	4										
				-											
					5										
				-								-			
				- (6							- - - -			
					7							- - - -			
				, , ,											
				- 1	8										
				- - - -											
				- 9	9							- - - -			
	Ground Wate	er (m)		Chie	10 selling / Hard	Strata	Casing	Depths	Hole Di	iameter	General Romarke				
Depth StruckC (m)	asing Depth (m) Water Le	vel Minutes W	ater sealed (m)	From (m)	To (m)	Time (I	hr) Diameter (mm)	Depth (m)	Diameter (mm) 87	Depth (m) 2.38	 Hand dug inspection No groundwater end Borehole terminated 	n pit to 1.20 countered. I at 1.64m	0m. on encour	ntering ha	rd strata.
Log last up	dated 03/09/202	!1													

	DUNE		RILLING TOON	BOREHOL	E RECOR	D		Bore WS	hole 17	
Contra	ct No: D10	208	Site: Gartre	ee 2			GL (m AOE 112.13 Easting: 470588.30	D) s N 1 2	Scale 1:50 lorthing: 88805.80	
Client:	Pick Everar	d			Driller: RE	Logged By:	Sheet 1 of	1		
Method	: Windowle	ess Sampling			Checked By: I	3L	Dates:	13/11/2020)	
Туре	SAMPLE Depth From-To (m)	DETAILS	b (Casing)	s	TRATA RECOR	D	Depth (m)	Level (m AOD)	Legend	Well/ Backfill
D ES	0.10 0.10			MADE GROUND: Bro topsoil. Gravel is suba occasional brick. Root	wn, sandy, slightly ngular, fine to coar s and rootlets note	gravelly, clayey se of chalk and d.	(0.45)			
B D	0.60 - 0.70 0.60		13/11/2020 1700 (0.00) Dry	Very stiff grey mottled CLAY. Gravel is angula Formation).	orange brown sligh ar fine to coarse of	ntly sandy gravelly siltstone. (Dyrham	0.45	111.68 111.36		
			- 1 - 1	E	nd of Borehole at 0.77 r	n	- - -			
			- - - -				- - -			
			-2							
							- - - -			
			- 3							
							- - - -			
			- 4				- - -			
			- 5				- - - -			
			- - - -				- - -			
			- 6				- - -			
			- 7				 			
			- 8							
			- 9							
<u> </u>	Ground Wate	r (m)	10 Chiselling / Hard Stee	ta Casing Donthe	Hole Diametor	General Romarko				
Depth Struck C (m)	asing Depth (m) Water Lev	/el Minutes Water sealed (m)	From (m) To (m) 1	ime (hr) Diameter (mm) Depth (m)	Diameter (mm) Depth (m)	1. Hand dug inspection 2. No groundwater end 3. Borehole terminated	n pit to 0.77 countered. d at 0.77m	7m. on encour	ntering ha	rd strata.
Log last up	dated 03/09/202	1								

	DUNE OTECHNICAL & ENVIR	IONMENTAL Street Briteria		BOREHOLE RECORD		Bore WS	hole 618	
Contra	ct No: D10)208	Site: Gartre	ee 2	GL (m AO 112.39 Easting: 470395.80	D) (N D) 2	Scale 1:50 Jorthing: :88921.80	
Client:	Pick Evera	rd		Driller: RE Logged By: RA	Sheet 1 of	f1		
Method	: Windowl	ess Sampling		Checked By: BL	Dates:	10/11/2020	D	
	SAMPLE	E DETAILS	g) /ater					
Туре	Depth From-To (m)	Insitu Testing	(Casin Groundv	Description	(m)	(m AOD)	Legend	Backfill
D ES	0.10 0.10			Brown, slightly sandy, slightly gravelly, clayey TOPSOIL. Gravel is angular to subangular, fine to medium of chalk,	(0.30)	112.00		
в	0.50 - 0.70			Sandstone and coal. Rootlets noted. Firm orangish brown, mottled grey and brown, slightly sandy, slightly gravelly, silty CLAY of . Gravel is angular to subangular, fine of coal.	 (1.10)	112.00		
SPT (S)	1 20 - 1 65	N-14 (3 2/3 4 3 4)	-1				×	
3F1 (3)	1.20 - 1.05	14 (3,2/3,4,3,4)	. Diy	Very stiff arey method erenge brown elightly eardy grouply	1.40	110.99	××	
D	1.50		-	CLAY. Gravel is angular fine to coarse of siltstone. (Dyrham	-			
CDT (C)	2.00 2.45	N-27 (5 6/6 8 40 42)		Formation).	_ (0.80)			
5PT (5)	2.00 - 2.45	N=37 (5,6/6,8,10,13)	- 2 Dry		2.20	110.19		
	2.50			CLAY. Gravel is angular fine to coarse of siltstone. (Dyrham	-			
U	2.00			Formation).	(1.08)			
SPT (S)	3.00 - 3.28	N=50+ (7,9/10,14,26 for 50mm)	-3 Dry		_			
			10/11/2020 1700	5	3.28	109.11		
			(0.00) Dry	End of Borehole at 3.28 m	-			
			- - -		-			
			- 4		-			
					_			
			-					
					-			
			- 5		-			
					-			
			-		-			
					_			
			- 6		-			
					_			
			- -					
			- -		-			
					_			
					-			
					-			
			- 8		-			
					-			
			-		E			
			- 9		-			
			-		-			
			- - -					
1								
	Ground West	er (m)	10	ta Casing Danthe Hole Diamator Occurred Dance 1				
Depth Struck C	asing Depth (m) Water Le	evel Minutes Water sealed From	(m) To (m) T	ime (hr) Diameter (mm) Depth (m) Diameter (mm) Depth (m) Diameter (mm) 1. Hand dug inspection	on pit to 1.2	0m.		
(11)	(11)	(11)		2. No groundwater en 87 2.00 3. Borehole terminate	countered. d at 3.28m	on encou	ntering ha	rd strata.
							-	
Log last up	dated 03/09/202	21						

	COUNELMAN BEDTECHNICAL & ENVIRONMENTAL					BORE	HOL	E RE	CORI	D				Bore WS	hole 619	
Contra	ct No: D10)208		Site : Ga	rtree 2	2						GL (m 110.1 Eastir	n AOI 0 ng:) (C	Scale 1:50	
Client:	Pick Evera	rd						Drille	er: RE		Logged By: R	A Sheet	t 1 of	1	.00000.30	
Method	: Windowl	ess Sampling						Cheo	cked By: E	BL		Dates	s:	10/11/2020	0	
	SAMPLI			ter												
Туре	Depth From-To (m)	Insitu Testin	g	(Casing Groundwa			S	TRATA I Descr	RECORE	כ		Dep (n	pth n)	Level (m AOD)	Legend	Well/ Backfill
D ES	0.10 0.10					MADE GROU clayey topsoi	JND: Brov I with cob	wn, slight bles note	ly sandy, s d. Gravel	slighi is ar	tly gravelly, ngular to	_ (0.3	30)	100.80		
В	0.50 - 0.70		-			subangular, fi <u>Cobbles are a</u> Stiff orangish gravelly CLA	ine to me angular o brown, n ⁄. Gravel	dium of c <u>f brick an</u> nottled gro is angula	halk, sand <u>d granite.</u> ey, slightly r to suban	dston <u>Roo</u> y san ngula	e and coal. tlets noted. dy, slightly r, fine of coal.		10)	109.00		
CDT (C)	1 20 1 65		-	- 1									10)			
SPT (S)	1.20 - 1.65	N=12 (2,2/2,3,3,4)	-	Dry		Very stiff area	mottled	orange bi	rown sligh	thy e	andy gravelly		40	108.70		
D	1.50		-			CLAY. Gravel	is angula	ar fine to	coarse of	siltst	one. (Dyrham	Ē	80)			
SPT (S)	2.00 - 2.45	N=38 (6,6/7,8,12,11)	-	2 Dry								- (0.8	60)			
D	2.50		- - - - -			Very stiff grey CLAY. Gravel Formation).	mottled is angula	orange bi ar fine to o	rown sligh coarse of	ntly sa siltst	andy gravelly one. (Dyrham	2.2	20	107.90		
SPT (S)	3.00 - 3.45	N=28 (5,6/7,6,6,9)	- - - - -	- 3 Dry								- - - (1.9	99)			
D	3.50		-									E				
SPT (S)	3.70 - 4.12	N=50+ (6,10/12,17,17,4 50mm)	for	Dry												
			- - - -	10/11/2020 1 (0.00) Dr	y		E	nd of Boreh	ole at 4.12 n	n		4.1	19	105.91		
			-	-								-				
			-	- 5								-				
			-									-				
			-	6												
			-													
			-													
			-	7								-				
			- - -													
			-									Ē				
			-	- 8								Ē				
			-									Ē				
												E				
			-	- 9								-				
			-									E				
												-				
	Ground Wat	er (m)	Chi	- 10 iselling / Hard	Strata	Casing	Depthe	Hola D	iameter	Ger	oral Pomarka					
Depth Struck C (m)	asing Depth (m) Water Le	evel Minutes Water sealed	From (m)	To (m)	Time ((hr) Diameter (mm)	Depth (m)	Diameter (mm)	Depth (m)	1. Ha	and dug inspe	ction pit to	0 1.20	0m.		
								87	2.00 4.00	2. No 3. Bo	o groundwate orehole termir	r encounte ated at 4.′	ered. 12m	on encou	ntering ha	ırd strata.
Log last up	dated 03/09/202	21														
u				1												

	DUNE EDTECHNICAL & ENVIR		PRILLING	BOREHOLE RECORD		Bore	hole	
Contra	ct No: D10)208	Site: Gar	tree 2	GL (m AO 110.75 Easting: 470556.40	D) (D) 2	Scale 1:50 Northing: 188856.50	
Client:	Pick Evera	rd		Driller: RE Logged By: RA	Sheet 1 of	f 1	_	
Method			5		Dates:	10/11/2020		
Туре	Depth From-To (m)	Insitu Testin	6 (Casing) Groundwate	STRATA RECORD Description	Depth (m)	Level (m AOD)	Legend	Well/ Backfill
D ES B	0.10 0.10 0.50 - 0.70		-1	Orangish brown, mottled grey brown, slightly sandy, slightly gravelly, clayey TOPSOIL. Gravel is angular to subrounded, fine to medium of quartzite and coal. Rootlets noted. Firm orangish brown, mottled grey, slightly sandy, slightly gravelly CLAY of intermediate plasticity. Gravel is angular to subangular, fine to medium of coal.	(0.40) 0.40 (1.00)	110.35		
D SPT (S) D	1.10 1.20 - 1.65 1.70		Dry	Very stiff grey mottled orange brown slightly sandy gravelly CLAY. Gravel is angular fine to coarse of siltstone. (Dyrham Formation).	- - - - - -	109.35		
SPT (S) D	2.00 - 2.45	N=25 (3,4/5,6,5,9)	- 2 Dry	Very stiff grey mottled orange brown slightly sandy gravelly	(1.20)	108.15		
SPT (S) D	3.00 - 3.45 3.50	N=28 (5,5/6,6,7,9)	- 3 Dry	CLAY. Gravel is angular fine to coarse of siltstone. (Dyrham Formation).	 (1.58)			
SPT (S)	3.80 - 4.18	N=50+ (5,9/12,14,19,6)	Dry - 4 - 10/11/2020 17	00 End of Borehole at 4.18 m	- - - - - - 4.18	106.57		
	Ground Wate	er (m)	- 5 - 6 - 7 - 7 - 8 - 9 - 9 - 9 - 9 - 10 - Chiselling / Hard S	Strata Casing Depths Hole Diameter General Remarks				
Depth Struck C (m)	asing Depth (m) Water Le	vel Minutes Water sealed (m)	From (m) To (m)	Time (hr) Diameter (mm) Depth (m) Diameter (mm) Depth (m) 1. Hand dug inspecti 87 2.00 77 4.00	on pit to 1.2 ncountered. ed at 4.18m	on encou	ntering ha	rd strata.
Log last up	ualeu 03/09/202	. 1						

	DUNE OTECHNICAL & ENVIR	INMENTAL Souther DA	RILLING TOOM	BOREHOLE RECORD	Borehole WS21				
Contra	ct No: D10	0208	Site: Garti	ee 2	GL (m AO 113.25 Easting: 470681.30	m AOD) Scale 1:50 25 Scale 1:50 iing: Northing: 581.30 288811.10			
Client:	Pick Evera	rd		Driller: RE Logged By: RA	Sheet 1 of	f 1			
Method		ess Sampling		Checked By: BL	Dates:	09/11/202	0		
Туре	Depth From-To (m)	Insitu Testin	Groundwate	STRATA RECORD Description	Depth (m)	Level (m AOD)	Legend	Well/ Backfill	
D ES B	0.10 0.10 0.50 - 0.70			Stiff orangish brown, slightly sandy, slightly gravelly, silty CLAY of high plasticity. Gravel is angular to subrounded, fine to coarse of quartzite and coal.	(1.10)				
SPT (S) D	1.20 - 1.65 1.50	N=9 (1,2/2,2,2,3)	-1 Dry	Very stiff grey mottled orange brown slightly sandy gravelly CLAY. Gravel is angular fine to coarse of siltstone. (Dyrham Formation).	(0.80)	112.15			
SPT (S) D	2.00 - 2.45 2.50	N=23 (3,4/5,5,6,7)	2 Dry	Very stiff grey mottled orange brown slightly sandy gravelly CLAY. Gravel is angular fine to coarse of siltstone. (Dyrham Formation).		111.35			
SPT (S)	2.80 - 2.92	N=50+ (16,9 for 50mm/5 0mm)	50 for Dry 09/11/2020 170 - 3 (0.00) Dry - 4 - 4 - 5 - 6 - 7 - 7 - 7 - 7 - 8 - 8 - 9 - 9 - 9 - 9	End of Borehole at 2.92 m		110.33			
Depth Struck Ca (m)	asing Depth (m) Water Le	vel Minutes Water sealed (m)	From (m) To (m)	Diameter (mm) Depth (m) Diameter (mm) Depth (m) 1. Hand dug inspection 87 2.00 2. No groundwater er 3. Borehole terminate	on pit to 1.2 iccountered. ed at 2.92m	0m. on encou	ntering ha	rd strata.	

	DUNE OTECHNICAL & ENVIR	ATION		E	BORE	Borehole WS22									
Contra	ct No: D10	s	ite: Gar	tree 2		GL (m AO 115.48 Easting: 470806.40	GL (m AOD) Scale 1:50 115.48 Scale 1:50 Easting: Northing: 470806.40 288876.60								
Client:	Pick Evera	rd						Drille	r: RE	Lo	gged By: RA	Sheet 1 of	1		
Method	: Windowle	ess Sampling					Dates:	09/11/2020) 						
	SAMPLE			sing) dwate			S	TRATA I	RECORI	D		Depth	Level	Legend	Well/
Туре	Depth From-To (m)	Insitu Testin	ng	(Cas Groun				Descri	iption	lightly	andy, gravely	(m)	(m AOD)		Backfill
B ES D ES	0.10 0.10 0.50 - 0.70 0.50 0.50		- - - - - -		tops Stiff grav of q	DE GROU soil. Grave light orar velly, CLA uartzite a Dm: Land dra	JND: Brow el is angu ngish brow Y. Gravel nd coal. <i>in noted</i> .	wn and da lar, fine to vn, mottle is angula	ark grey s <u>o coarse c</u> ed grey, sl r to subro	blightly s of clinke lightly sa ounded,	andy, gravelly r. andy, slightly fine to coarse	(1.20)	115.28		
CDT (C)	1.00 1.65	N-12 (2 2/2 2 2 4)	- 1	Dest								-			
D	1.50	N=13 (2,2/3,3,3,4)		Dry	Very CLA	y stiff grey \Y of high tone. (Dv	/ mottled plasticity rham For	orange br . Gravel is mation).	rown sligh s angular	ntly sand fine to d	dy gravelly coarse of	1.40	114.08		
SPT (S)	2.00 - 2.44	N=50+ (6,9/11,10,12,17 65mm)	7 for = 2	Dry				,				(1.04) 			
			[(09/11/2020 17 (0.00) Dry	/00		Ei	nd of Boreho	ole at 2.44 r	n		2.44	113.04		
			- 4 - 5 - 6												
Depth Struck C (m) Log last upo	Ground Wate asing Depth (m) Water Le	er (m) vel Minutes Water sealed (m)	- 8 - 9 - 9 - 9 - 9 - 9 - 9 - 9 - 9 - 9 - 9	0 Jelling / Hard To (m)	Strata Time (hr)	Casing Diameter (mm)	Depths Depth (m)	Hole Di Diameter (mm) 87	ameter Depth (m) 2.00	Genera 1. Hanc 2. No g 3. Bore	Il Remarks d dug inspecti roundwater e hole terminat		0m.	ntering ha	ırd strata.

	DUNE OTECHNICAL & ENVIR	IONMENTAL Street Briteria		BOREHOLE RECORD		Borehole WS23						
Contra	ct No: D10)208	Site: Gartre	e 2	GL (m A0 112.79 Easting: 470678.5	GL (m AOD) Scale 1:50 112.79 Scale 1:50 Easting: Northing: 470678.50 288946.80						
Client:	Pick Evera	rd		Driller: RE Logg	ed By: RA Sheet 1	Sheet 1 of 1						
Method	: Windowle	ess Sampling		Checked By: BL	Dates:	09/11/2020	0	1				
Type	SAMPLE Depth	E DETAILS	Casing) oundwater	STRATA RECORD Description	Depth (m)	Level (m AOD)	Legend	Well/ Backfill				
D ES	0.10 0.10		- 5 -	Brown, slightly sandy, slightly gravelly, clayey TOPS Gravel is angular to subangular, fine to medium of o	SOIL chalk							
в	0.50 - 0.70			Stiff orangish brown, mottled grev, slightly sandy, sl	lightly 0.60	112.19						
			- 1	gravelly CLAY. Gravel is angular, fine to medium of	coal.							
SPT (S) D	1.20 - 1.65 1.50	N=6 (1,1/1,2,1,2)	- Dry -		(1.40)							
SPT (S)	2 00 - 2 45	N=21 (4 4/4 5 5 7)	- 2 Drv		200	110 79						
011(0)	2.00 - 2.40	11-21 (4,474,0,0,7)		Very stiff grey mottled orange brown slightly sandy CLAY. Gravel is angular fine to coarse of siltstone. Formation).	gravelly (Dyrham	110.79						
D	2.50		- - -			100.80						
SPT (S)	3.00 - 3.19	N=50+ (10,15 for 30mm/24,26 f 10mm)	or - 3 Dry 09/11/2020 1700 (0.00) Dry	Very stiff grey mottled orange brown slightly sandy CLAY. Gravel is angular fine to coarse of siltstone. Formation).	gravelly (Dyrham 2.90 (Dyrham 3.19	109.89						
				End of Borehole at 3.19 m								
			- 4		 							
			- - -									
			- 5		-							
			- - -									
			- 6		-							
			- - - -									
			- 7									
			-									
			- 8									
			- - -									
			: - 9 :									
 	Ground Wate	er (m)	10 Chiselling / Hard Stra	a Casing Depths Hole Diameter General F	Remarks							
Depth Struck Ca (m)	asing Depth (m) Water Le	wel Minutes Water sealed From	(m) To (m)	me (hr) Diameter (mm) Depth (m) Diameter (mm) Depth (m) 1. Hand d 87 2.00 77 3.00 3. Boreho	lug inspection pit to 1. undwater encountered le terminated at 3.19r	20m. I. n on encou	ntering ha	ırd strata.				
Log last upo	dated 03/09/202	21										

	RILLING ATION			BORE		Borehole WS24								
Contra	5	Site: Ga	rtree	2	GL (m AO 112.96 Easting: 470679.40	GL (m AOD) 112.96 Scale 1:50 Easting: Northing: 470679.40 288960.60								
Client:	Pick Evera	rd					A Sheet 1 of	Sheet 1 of 1						
Method	: Windowle	ess Sampling					Dates:	Dates: 10/11/2020						
	SAMPLE	E DETAILS		g) ater						_				
Туре	Depth From-To (m)	Insitu Testin	g	(Casin Groundw			5	Descr	Depth (m)	Level (m AOD)	Legend	Well/ Backfill		
D ES	0.10 0.10					Orangish bro TOPSOIL. Gi	wn, slight avel is ar	tly sandy, ngular to s	slightly g subangul	ravelly, clayey ar, fine to medium c	of (0.40)			
В	0.50 - 0.70					chaik. Rootie Stiff orangish gravelly CLA	ts noted. brown, n ſ. Gravel	nottled gr is angula	ey, slightl r, fine to	ly sandy, slightly medium of coal.	0.40	112.56		
SPT (S)	1.20 - 1.65			1 Dry							-			
D	1.50		-								Ē			
											(2.60)			
SPT (S)	2.00 - 2.45	N=7 (1,1/2,1,2,2)	-	2 Dry							-			
D	2.50		-								-			
			ļ								-			
SPT (S)	3.00 - 3.45	N=17 (2,3/3,4,5,5)	- - - - -	3 Dry		Very stiff grey CLAY. Gravel Formation).	r mottled is angula	orange b ar fine to	rown slig coarse of	htly sandy gravelly f siltstone. (Dyrham	3.00	109.96		
0.077 (0)	4.00 4.45	N 40 (5 0/7 40 44 40)	- - - -								(1.20) 			
SPT (S)	4.00 - 4.45	N=40 (5,6/7,10,11,12)	-	4 Dry		Very stiff grey	mottled	orange b	rown slig	htly sandy gravelly	4.20	108.76		
D	4.50		-			Formation).	is angula		coarse or	silisione. (Dymani	(1.02)			
SPT (S)	5.00 - 5.22	N=50+ (15,10 for 40mm 30mm)	1/18,32 for	5 Dry							-			
			-	10/11/2020 1 (0.00) Dr	700 — y		E	nd of Boreh	ole at 5.22	m	5.22	107.74	<u> </u>	
											-			
			-	6							-			
			ł								E			
			[
			-	7							-			
			-											
			-								-			
			-	8										
											-			
			-								-			
			-	9							-			
			-								-			
			[E			
				10							-			
Dontt of 1	Ground Wate	er (m)	Chis	selling / Hard	Strata	Casing	Depths	Hole D	iameter	General Remarks			1	
uepth StruckC (m)	(m) Water Le	evel Minutes Vvater sealed (m)	From (m)	To (m)	Time ((hr) Diameter (mm)	Depth (m)	01ameter (mm) 87 77 67	Depth (m) 2.00 4.00 5.00	 Hand dug insperion No groundwater Borehole terminity 	ction pit to 1.2 encountered. ated at 5.22m	:um. i on encou	ntering ha	rd strata.
Log last up	dated 03/09/202	21												

COUNELM South Barries Togociation				ATION	BOREHOLE RECORD									Borehole WS25					
Contract No: D10208					Site: Gartree 2									GL (m AOD) Scale 1:50 115.91 Scale 1:50 Easting: Northing: 470796.30 288974.10					
Client:	Pick Evera	rd	ł						Drill	er: RE	Logged By: RA	Sheet 1 of 1							
Method	: Windowle	ess Sarr		Checked By: BL								Dates:	09/11/2020	2					
	SAMPLE		_S		ng) vater				S	τρατα	RECOR	П	Donth	Loval		Wall/			
Туре	Depth From-To (m)	Ins	itu Testir	ıg	(Casi Ground		Description						(m)	(m AOD)	Legend	Backfill			
D ES B	0.10 0.10 0.50			- - - - - - - - - - - - - - 			Firm lig gravell of chal	ght orar y CLAY k and c	ngish bro ⁄. Gravel :oal. Cob	wn, mot is angula bles and	tled grey, : ar to suba l/or boulde	slightly sandy, slightly ngular, fine to coarse ers of granite noted.	/						
SPT (S) D	1.20 - 1.65 1.50	N=8 (1,2/2,2	.,2,2)		1 Dry														
SPT (S)	2.00 - 2.45	N=18 (5,7/5,	4,4,5)		2 Dry		Very st CLAY. Format	tiff grey Gravel tion).	mottled is angula	orange t ar fine to	prown slig coarse of	htly sandy gravelly f siltstone. (Dyrham	1.80	114.11					
D SPT (S)	2.50 3.00 - 3.45	N=32 (6,6/6,	8,8,10)	-	3 Dry								(1.50) 						
D	3.50			- - - -	_		<u>3.20m to</u> Very st CLAY. Format	<u>o 3.30m:</u> tiff grey Gravel tion).	Orange bro mottled is angula	<i>wn, silty, fir</i> orange t ar fine to	ie <u>to medium</u> prown slig coarse of	<u>SAND.</u> htly sandy gravelly f siltstone. (Dyrham	- 3.30 - (0.95)	112.61					
SPT (S)	3.90 - 4.25	N=50+ (12,1 50mm)	2/14,18,18	tor -	Dry 4 09/11/2020 1 (0.00) Dr	700 — y			E	nd of Bore	hole at 4.25	m	- - - - - - - - - - - - - -	111.66					
					5														
				-	6														
				-	7														
				-	8														
				- - - - - - -	9														
				-															
	Ground Wate	er (m)		Chis	selling / Hard	Strata		Casing	Depths	Hole	Diameter	General Remarks		1					
Depth StruckC (m) 2.20	asing Depth (m) Water Le	vel Minutes	Water sealed (m)	From (m)	To (m)	Time	e (hr) E	Diameter (mm)	Depth (m)	Diameter (mm) 87 77	Depth (m) 2.00 3.90	1. Hand dug inspect 2. No groundwater e 3. Borehole termina	ion pit to 1.2 encountered. ted at 4.25m	0m. on encou	ntering ha	rd strata.			
Log last upo	dated 03/09/202	21																	

Appendix E

Chemical Testing Records

Certificate Number 20-23377

Client Dunelm Geotechnical & Environmental Ltd Foundation House St. John's Road Meadowfield Durham DH7 8TZ

Our Reference 20-2	23377
--------------------	-------

Contract Title Gartree 2 Ground Investigation

Description 6 Soil samples.

Date Received 17-Nov-20

Date Started 17-Nov-20

Date Completed 20-Nov-20

Test Procedures Identified by prefix DETSn (details on request).

Notes Opinions and interpretations are outside the laboratory's scope of ISO 17025 accreditation. This certificate is issued in accordance with the accreditation requirements of the United Kingdom Accreditation Service. The results reported herein relate only to the material supplied to the laboratory. This certificate shall not be reproduced except in full, without the prior written approval of the laboratory.

Approved By

Adam Fenwick Contracts Manager

20-Nov-20

I DETS

Summary of Chemical Analysis Matrix Descriptions

Our Ref 20-23377 Client Ref D10208 Contract Title Gartree 2 Ground Investigation

Sample ID	Depth	Lab No	Completed	Matrix Description
WS1	0.1	1762509	20/11/2020	Dark brown slightly sandy CLAY including odd rootlets
WS4	0.1	1762510	20/11/2020	Dark brown slightly sandy CLAY including odd rootlets
WS9	0.1	1762511	20/11/2020	Dark brown dark grey slightly sandy CLAY including odd rootlets
WS17	0.1	1762512	20/11/2020	Dark brown slightly gravelly, sandy CLAY including odd rootlets
WS19	0.1	1762513	20/11/2020	Dark brown slightly gravelly, sandy CLAY including odd rootlets
WS22	0.1	1762514	20/11/2020	Dark brown slightly gravelly, sandy CLAY including odd rootlets

i DETS

Summary of Chemical Analysis Soil Samples

Our Ref 20-23377 *Client Ref* D10208 *Contract Title* Gartree 2 Ground Investigation

Investigation			Lab No	1762509	1762510	1762511	1762512	1762513	1762514
		Sa	ample ID	WS1	WS4	WS9	WS17	WS19	WS22
			Depth	0.10	0.10	0.10	0.10	0.10	0.10
			Other ID						
		Sam	ple Type	ES	ES	ES	ES	ES	ES
		Sampl	ing Date	n/s	n/s	n/s	n/s	11/11/2020	11/11/2020
		Sampl	ing Time	n/s	n/s	n/s	n/s	n/s	n/s
Test	Method	LOD	Units	1	I				
Metals									
Arsenic	DETSC 2301#	0.2	mg/kg	18	51	13	20	18	18
Cadmium	DETSC 2301#	0.1	mg/kg	0.2	0.3	< 0.1	0.3	0.2	< 0.1
Chromium	DETSC 2301#	0.15	mg/kg	51	49	50	41	31	35
Chromium, Hexavalent	DETSC 2204*	1	mg/kg	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0
Copper	DETSC 2301#	0.2	mg/kg	32	31	34	29	26	23
Lead	DETSC 2301#	0.3	mg/kg	36	45	22	64	26	20
Mercury	DETSC 2325#	0.05	mg/kg	0.08	0.08	< 0.05	0.05	0.11	< 0.05
Nickel	DETSC 2301#	1	mg/kg	41	38	35	24	21	22
Selenium	DETSC 2301#	0.5	mg/kg	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5
Zinc	DETSC 2301#	1	mg/kg	130	160	100	120	160	68
Inorganics	· · · · · · · · · · · · · · · · · · ·				·				
рН	DETSC 2008#		pН	7.2	7.0	6.4	7.5	7.4	7.1
Organic matter	DETSC 2002#	0.1	%	3.4		2.0	4.8	3.3	9.9
Sulphate Aqueous Extract as SO4	DETSC 2076#	10	mg/l	28	19	28	22	16	22
Petroleum Hydrocarbons									
Aliphatic C5-C6	DETSC 3321*	0.01	mg/kg	< 0.01		< 0.01	< 0.01	< 0.01	
Aliphatic C6-C8	DETSC 3321*	0.01	mg/kg	< 0.01		< 0.01	< 0.01	< 0.01	
Aliphatic C8-C10	DETSC 3321*	0.01	mg/kg	< 0.01		< 0.01	< 0.01	< 0.01	
Aliphatic C10-C12	DETSC 3072#	1.5	mg/kg	< 1.5		< 1.5	< 1.5	< 1.5	
Aliphatic C12-C16	DETSC 3072#	1.2	mg/kg	< 1.2		< 1.2	< 1.2	< 1.2	
Aliphatic C16-C21	DETSC 3072#	1.5	mg/kg	< 1.5		< 1.5	< 1.5	< 1.5	
Aliphatic C21-C35	DETSC 3072#	3.4	mg/kg	< 3.4		< 3.4	< 3.4	< 3.4	
Aliphatic C5-C35	DETSC 3072*	10	mg/kg	< 10		< 10	< 10	< 10	
Aromatic C5-C7	DETSC 3321*	0.01	mg/kg	< 0.01		< 0.01	< 0.01	< 0.01	
Aromatic C7-C8	DETSC 3321*	0.01	mg/kg	< 0.01		< 0.01	< 0.01	< 0.01	
Aromatic C8-C10	DETSC 3321*	0.01	mg/kg	< 0.01		< 0.01	< 0.01	< 0.01	
Aromatic C10-C12	DETSC 3072#	0.9	mg/kg	< 0.9		< 0.9	< 0.9	< 0.9	
Aromatic C12-C16	DETSC 3072#	0.5	mg/kg	< 0.5		< 0.5	< 0.5	< 0.5	
Aromatic C16-C21	DETSC 3072#	0.6	mg/kg	< 0.6		< 0.6	< 0.6	< 0.6	
Aromatic C21-C35	DETSC 3072#	1.4	mg/kg	< 1.4		< 1.4	< 1.4	< 1.4	
Aromatic C5-C35	DETSC 3072*	10	mg/kg	< 10		< 10	< 10	< 10	
TPH Ali/Aro Total C5-C35	DETSC 3072*	10	mg/kg	< 10		< 10	< 10	< 10	
PAHs	1								
Naphthalene	DETSC 3301	0.1	mg/kg	< 0.1		< 0.1	< 0.1	< 0.1	< 0.1
Acenaphthylene	DETSC 3301	0.1	mg/kg	< 0.1		< 0.1	< 0.1	< 0.1	< 0.1
Acenaphthene	DETSC 3301	0.1	mg/kg	< 0.1		< 0.1	< 0.1	< 0.1	< 0.1
Fluorene	DETSC 3301	0.1	mg/kg	< 0.1		< 0.1	< 0.1	< 0.1	< 0.1
Phenanthrene	DETSC 3301	0.1	mg/kg	< 0.1		< 0.1	0.3	< 0.1	< 0.1
Anthracene	DETSC 3301	0.1	mg/kg	< 0.1		< 0.1	< 0.1	< 0.1	< 0.1
Fluoranthene	DETSC 3301	0.1	mg/kg	0.2		< 0.1	0.8	0.2	0.3
Pyrene	DETSC 3301	0.1	mg/kg	0.2		< 0.1	0.7	0.2	0.3
Benzo(a)anthracene	DETSC 3301	0.1	mg/kg	0.2		< 0.1	0.4	0.2	0.2
Benzola/antinacene	56136 3301	0.1	ة^י /ةייי	0.2		× 0.1	0.4	0.2	0.2

Summary of Chemical Analysis Soil Samples

Our Ref 20-23377 Client Ref D10208 Contract Title Gartree 2 Ground Investigation

Investigation			Lab No	1762509	1762510	1762511	1762512	1762513	1762514
		Sa	ample ID	WS1	WS4	WS9	WS17	WS19	WS22
			Depth	0.10	0.10	0.10	0.10	0.10	0.10
			Other ID						
		Sam	ple Type	ES	ES	ES	ES	ES	ES
		Sampl	ing Date	n/s	n/s	n/s	n/s	11/11/2020	11/11/2020
		Sampl	ing Time	n/s	n/s	n/s	n/s	n/s	n/s
Test	Method	LOD	Units						
Chrysene	DETSC 3301	0.1	mg/kg	0.2		< 0.1	0.4	0.1	0.2
Benzo(b)fluoranthene	DETSC 3301	0.1	mg/kg	0.1		< 0.1	0.3	0.2	0.1
Benzo(k)fluoranthene	DETSC 3301	0.1	mg/kg	< 0.1		< 0.1	0.2	0.1	0.1
Benzo(a)pyrene	DETSC 3301	0.1	mg/kg	0.1		< 0.1	0.4	0.2	0.2
Indeno(1,2,3-c,d)pyrene	DETSC 3301	0.1	mg/kg	0.2		< 0.1	0.5	0.2	0.3
Dibenzo(a,h)anthracene	DETSC 3301	0.1	mg/kg	< 0.1		< 0.1	0.3	0.2	0.1
Benzo(g,h,i)perylene	DETSC 3301	0.1	mg/kg	0.1		< 0.1	0.2	< 0.1	0.1
PAH Total	DETSC 3301	1.6	mg/kg	< 1.6		< 1.6	4.5	1.7	2.0

. . .. **г**

i DETS

Summary of Asbestos Analysis Soil Samples

Our Ref 20-23377 *Client Ref* D10208 *Contract Title* Gartree 2 Ground Investigation

Lab No	Sample ID	Material Type	Result	Comment*	Analyst
1762509	WS1 0.10	SOIL	NAD	none	Darryl Fletcher
1762511	WS9 0.10	SOIL	NAD	none	Darryl Fletcher
1762512	WS17 0.10	SOIL	NAD	none	Darryl Fletcher
1762513	WS19 0.10	SOIL	NAD	none	Darryl Fletcher
1762514	WS22 0.10	SOIL	NAD	none	Darryl Fletcher

Crocidolite = Blue Asbestos, Amosite = Brown Asbestos, Chrysotile = White Asbestos. Anthophyllite, Actinolite and Tremolite are other forms of Asbestos. Samples are analysed by DETSC 1101 using polarised light microscopy in accordance with HSG248 and documented in-house methods. NAD = No Asbestos Detected. Where a sample is NAD, the result is based on analysis of at least 2 sub-samples and should be taken to mean 'no asbestos detected in sample'. Key: * not included in laboratory scope of accreditation.

Inappropriate

Information in Support of the Analytical Results

Our Ref 20-23377 Client Ref D10208 Contract Gartree 2 Ground Investigation

Containers Received & Deviating Samples

		Date			container for
Lab No	Sample ID	Sampled	Containers Received	Holding time exceeded for tests	tests
1762509	WS1 0.10 SOIL		GJ 250ml, GJ 60ml, PT 1L	Sample date not supplied, Anions 2:1 (30 days), Aliphatics/Aromatics (14 days), BTEX (14 days), Chromium, Hexavalent (365 days), Mercury (28 days), Metals ICP (182 days), Metals ICP Prep (182 days), Kone Cr6 (30 days), Naphthalene (14 days), Organic Matter (Manual) (28 days), PAH FID (14	
1762510	WS4 0.10 SOIL		GJ 250ml, GJ 60ml, PT 1L	Sample date not supplied, Anions 2:1 (30 days), Chromium, Hexavalent (365 days), Mercury (28 days), Metals ICP (182 days), Metals ICP Prep (182 days), Kone Cr6 (30 days), pH + Conductivity (7 days)	
1762511	WS9 0.10 SOIL		GJ 250ml, GJ 60ml, PT 1L	Sample date not supplied, Anions 2:1 (30 days), Aliphatics/Aromatics (14 days), BTEX (14 days), Chromium, Hexavalent (365 days), Mercury (28 days), Metals ICP (182 days), Metals ICP Prep (182 days), Kone Cr6 (30 days), Naphthalene (14 days), Organic Matter (Manual) (28 days), PAH FID (14	
1762512	WS17 0.10 SOIL		GJ 250ml, GJ 60ml, PT 1L	Sample date not supplied, Anions 2:1 (30 days), Aliphatics/Aromatics (14 days), BTEX (14 days), Chromium, Hexavalent (365 days), Mercury (28 days), Metals ICP (182 days), Metals ICP Prep (182 days), Kone Cr6 (30 days), Naphthalene (14 days), Organic Matter (Manual) (28 days), PAH FID (14	
1762513	WS19 0.10 SOIL	11/11/20	GJ 250ml, GJ 60ml, PT 1L		
1762514	WS22 0.10 SOIL	11/11/20	GJ 250ml, GJ 60ml, PT 1L		
Key: G-Glas	s P-Plastic J-Jar T-Tub				

DETS cannot be held responsible for the integrity of samples received whereby the laboratory did not undertake the sampling. In this instance samples received may be deviating. Deviating Sample criteria are based on British and International standards and laboratory trials in conjunction with the UKAS note 'Guidance on Deviating Samples'. All samples received are listed above. However, those samples that have additional comments in relation to hold time, inappropriate containers etc are deviating due to the reasons stated. This means that the analysis is accredited where applicable, but results may be compromised due to sample deviations. If no sampled date (soils) or date+time (waters) has been supplied then samples are deviating. However, if you are able to supply a sampled date (and time for waters) this will prevent samples being reported as deviating where specific hold times are not exceeded and where the container supplied is suitable.

Soil Analysis Notes

Inorganic soil analysis was carried out on a dried sample, crushed to pass a 425μm sieve, in accordance with BS1377. Organic soil analysis was carried out on an 'as received' sample. Organics results are corrected for moisture and expressed on a dry weight basis. The Loss on Drying, used to express organics analysis on an air dried basis, is carried out at a temperature of 28°C +/-2°C.

Disposal

From the issue date of this test certificate, samples will be held for the following times prior to disposal :-Soils - 1 month, Liquids - 2 weeks, Asbestos (test portion) - 6 months

i DETS

Appendix A - Details of Analysis

			LIMIT OT	Sample			
Method	Parameter	Units	Detection	Preparation	Sub-Contracted	UKAS	MCERTS
DETSC 2002	Organic matter	%	0.1	Air Dried	No	Yes	Yes
DETSC 2003	Loss on ignition	%	0.01	Air Dried	No	Yes	Yes
DETSC 2008	pH	pH Units	1	Air Dried	No	Yes	Yes
DETSC 2024	Sulphide	mg/kg	10	Air Dried	No	Yes	Yes
DETSC 2076	Sulphate Aqueous Extract as SO4	mg/l	10	Air Dried	No	Yes	Yes
DETSC 2084	Total Carbon	%	0.5	Air Dried	No	Yes	Yes
DETSC 2004	Total Organic Carbon	%	0.5	Air Dried	No	Voc	Ves
DETSC 2004	Ammoniacal Nitrogon as N	^{/0}	0.5	Air Dried	No	Voc	Voc
DETSC 2119	Cuanida frag	mg/kg	0.5	Air Dried	No	Voc	Voc
DETSC 2130		iiig/kg	0.1	All Dried	No	Vee	Yee
DETSC 2130	Cyanide total	mg/kg	0.1	Air Dried	NO	Yes	Yes
DETSC 2130	Phenol - Mononyaric	mg/kg	0.3	Air Dried	NO	Yes	Yes
DETSC 2130	Iniocyanate	mg/kg	0.6	Air Dried	NO	Yes	Yes
DETSC 2321	Total Sulphate as SO4	%	0.01	Air Dried	No	Yes	Yes
DETSC 2325	Mercury	mg/kg	0.05	Air Dried	No	Yes	Yes
DETSC 3049	Sulphur (free)	mg/kg	0.75	Air Dried	No	Yes	Yes
DETSC2123	Boron (water soluble)	mg/kg	0.2	Air Dried	No	Yes	Yes
DETSC2301	Arsenic	mg/kg	0.2	Air Dried	No	Yes	Yes
DETSC2301	Barium	mg/kg	1.5	Air Dried	No	Yes	Yes
DETSC2301	Beryllium	mg/kg	0.2	Air Dried	No	Yes	Yes
DETSC2301	Cadmium Available	mg/kg	0.1	Air Dried	No	Yes	Yes
DETSC2301	Cadmium	mg/kg	0.1	Air Dried	No	Yes	Yes
DETSC2301	Cobalt	mg/kg	0.7	Air Dried	No	Yes	Yes
DETSC2301	Chromium	mg/kg	0.15	Air Dried	No	Yes	Yes
DETSC2301	Conner	mg/kg	0.2	Air Dried	No	Ves	Ves
DETSC2201	Manganoso	mg/kg	20	Air Dried	No	Voc	Voc
DETSC2201	Malybdonum	mg/kg	20	Air Dried	No	Voc	Voc
DE13C2301	Niekol	mg/kg	1	Air Dried	No	Vec	Vec
DETSC2301	NICKEI	mg/kg	1	Air Dried	NO	Yes	Yes
DETSC2301	Lead	mg/kg	0.3	Air Dried	NO	Yes	Yes
DETSC2301	Selenium	mg/kg	0.5	Air Dried	No	Yes	Yes
DETSC2301	Zinc	mg/kg	1	Air Dried	No	Yes	Yes
DETSC 3072	Ali/Aro C10-C35	mg/kg	10	As Received	No	Yes	Yes
DETSC 3072	Aliphatic C10-C12	mg/kg	1.5	As Received	No	Yes	Yes
DETSC 3072	Aliphatic C10-C12	mg/kg	10	As Received	No	Yes	Yes
DETSC 3072	Aliphatic C10-C35	mg/kg	10	As Received	No	Yes	Yes
DETSC 3072	Aliphatic C12-C16	mg/kg	1.2	As Received	No	Yes	Yes
DETSC 3072	Aliphatic C12-C16	mg/kg	10	As Received	No	Yes	Yes
DETSC 3072	Aliphatic C16-C21	mg/kg	1.5	As Received	No	Yes	Yes
DETSC 3072	Aliphatic C16-C21	mg/kg	10	As Received	No	Yes	Yes
DETSC 3072	Aliphatic C21-C35	mg/kg	3.4	As Received	No	Yes	Yes
DETSC 3072	Aliphatic C21-C35	mg/kg	3.4	As Received	No	Yes	Yes
DETSC 3072	Aromatic C10-C12	mg/kg	0.9	As Received	No	Yes	Yes
DETSC 3072	Aromatic C10-C12	mg/kg	10	As Received	No	Yes	Yes
DETSC 3072	Aromatic C10-C35	mg/kg	10	As Received	No	Yes	Yes
DETSC 3072	Aromatic C12-C16	mg/kg	0.5	As Received	No	Ves	Ves
DETSC 2072	Aromatic C12-C16	mg/kg	10	As Received	No	Voc	Voc
DETSC 2072	Aromatic C12-C10	mg/kg	10	As Received	No	Voc	Voc
DE13C 3072	Aromatic C16-C21	iiig/kg	0.0	As Received	No	Vee	Yee
DETSC 3072	Aromatic C16-C21	mg/kg	10	As Received	NO	Yes	Yes
DETSC 3072	Aromatic C21-C35	mg/kg	1.4	As Received	NO	Yes	Yes
DETSC 3072	Aromatic C21-C35	mg/kg	1.4	As Received	No	Yes	Yes
DETS 062	Benzene	mg/kg	0.01	As Received	No	Yes	Yes
DETS 062	Ethylbenzene	mg/kg	0.01	As Received	No	Yes	Yes
DETS 062	Toluene	mg/kg	0.01	As Received	No	Yes	Yes
DETS 062	Xylene	mg/kg	0.01	As Received	No	Yes	Yes
DETS 062	m+p Xylene	mg/kg	0.01	As Received	No	Yes	Yes
DETS 062	o Xylene	mg/kg	0.01	As Received	No	Yes	Yes
DETSC 3311	C10-C24 Diesel Range Organics (DRO)	mg/kg	10	As Received	No	Yes	Yes
DETSC 3311	C24-C40 Lube Oil Range Organics (LORO)	mg/kg	10	As Received	No	Yes	Yes
DETSC 3311	ЕРН (С10-С40)	mg/kg	10	As Received	No	Yes	Yes

i DETS

Appendix A - Details of Analysis

			μιπιτ οτ	Sample			
Method	Parameter	Units	Detection	Preparation	Sub-Contracted	UKAS	MCERTS
DETSC 3303	Acenaphthene	mg/kg	0.03	As Received	No	Yes	Yes
DETSC 3303	Acenaphthylene	mg/kg	0.03	As Received	No	Yes	Yes
DETSC 3303	Benzo(a)pyrene	mg/kg	0.03	As Received	No	Yes	Yes
DETSC 3303	Benzo(a)anthracene	mg/kg	0.03	As Received	No	Yes	Yes
DETSC 3303	Benzo(b)fluoranthene	mg/kg	0.03	As Received	No	Yes	Yes
DETSC 3303	Benzo(k)fluoranthene	mg/kg	0.03	As Received	No	Yes	Yes
DETSC 3303	Benzo(g,h,i)perylene	mg/kg	0.03	As Received	No	Yes	Yes
DETSC 3303	Dibenzo(a,h)anthracene	mg/kg	0.03	As Received	No	Yes	Yes
DETSC 3303	Fluoranthene	mg/kg	0.03	As Received	No	Yes	Yes
DETSC 3303	Indeno(1,2,3-c,d)pyrene	mg/kg	0.03	As Received	No	Yes	Yes
DETSC 3303	Naphthalene	mg/kg	0.03	As Received	No	Yes	Yes
DETSC 3303	Phenanthrene	mg/kg	0.03	As Received	No	Yes	Yes
DETSC 3303	Pyrene	mg/kg	0.03	As Received	No	Yes	Yes
DETSC 3401	PCB 28 + PCB 31	mg/kg	0.01	As Received	No	Yes	Yes
DETSC 3401	PCB 52	mg/kg	0.01	As Received	No	Yes	Yes
DETSC 3401	PCB 101	mg/kg	0.01	As Received	No	Yes	Yes
DETSC 3401	PCB 118	mg/kg	0.01	As Received	No	Yes	Yes
DETSC 3401	PCB 153	mg/kg	0.01	As Received	No	Yes	Yes
DETSC 3401	PCB 138	mg/kg	0.01	As Received	No	Yes	Yes
DETSC 3401	PCB 180	mg/kg	0.01	As Received	No	Yes	Yes
DETSC 3401	PCB Total	mg/kg	0.01	As Received	No	Yes	Yes

Method details are shown only for those determinands listed in Annex A of the MCERTS standard. Anything not included on this list falls outside the scope of MCERTS. No Recovery Factors are used in the determination of results. Results reported assume 100% recovery. Full method statements are available on request.

End of Report

Waste Classification Report

Job name			
Gartree 2			
Description/Comme	ents		
DETS Laboratory Test Ce	rtificate 20-23377		
Project			
D10208			
Site			
Gartree 2			
Related Documents			
# Name	Descrip	tion	
None			
Waste Stream Temp	plate		
Example waste stream ter	nplate for contaminated soils		
Classified by			
Name: Sarah Grieves Date: 11 Dec 2020 16:07 GMT Telephone: 0191 3783151	Company: Dunelm Geotechnical & Environmental Foundation House, St John's Rd Meadowfield Durham DH7 8TZ	HazWasteOnline [™] Training Record: Course Hazardous Waste Classification Advanced Hazardous Waste Classification	Date - -

Report

Created by: Sarah Grieves Created date: 11 Dec 2020 16:07 GMT

Job summary

#	Sample Name	Depth [m]	Classification Result	Hazard properties	Page
1	WS1	0.10	Non Hazardous		2
2	WS4	0.10	Non Hazardous		4
3	WS9	0.10	Non Hazardous		6
4	WS17	0.10	Non Hazardous		8
5	WS19	0.10	Non Hazardous		10
6	WS22	0.10	Non Hazardous		12

Page
14
15
15

Classification of sample: WS1

Sample details

Sample Name:	LoW/Code:	
Campie Name.		
WS1	Chapter:	17: Construction and Demolition Waste
Sample Depth:		from contaminated sites)
0.10 m	Entry:	17 05 04 (Soil and stones other than the stones of the store than the store st
		03)

es (including excavated soil hose mentioned in 17 05

Hazard properties

None identified

Determinands

Moisture content: 0% No Moisture Correction applied (MC)

#		Determinand CLP index number EC Number CAS Number	CLP Note	User entered data	Conv. Factor	Compound conc.	Classification value	MC Applied	Conc. Not Used
1	4	arsenic { arsenic trioxide } 033-003-00-0 215-481-4 1327-53-3		18 mg/kg	1.32	23.766 mg/kg	0.00238 %		
2	4	cadmium { cadmium oxide } 048-002-00-0 215-146-2 1306-19-0		0.2 mg/kg	1.142	0.228 mg/kg	0.0000228 %		
3	4	chromium in chromium(III) compounds { Chromium(III) oxide (worst case) } 215-160-9 1308-38-9		51 mg/kg	1.462	74.539 mg/kg	0.00745 %		
4	4	chromium in chromium(VI) compounds { chromium (VI) compounds, with the exception of barium chromate and of compounds specified elsewhere in this Annex } 024-017-00-8		<1 mg/kg	2.27	<2.27 mg/kg	<0.000227 %		<lod< th=""></lod<>
5	4	copper { dicopper oxide; copper (I) oxide } 029-002-00-X 215-270-7 1317-39-1		32 mg/kg	1.126	36.028 mg/kg	0.0036 %		
6	4	lead { lead chromate } 082-004-00-2 231-846-0 7758-97-6	1	36 mg/kg	1.56	56.153 mg/kg	0.0036 %		
7	4	mercury { mercury dichloride } 080-010-00-X 231-299-8 7487-94-7		0.08 mg/kg	1.353	0.108 mg/kg	0.0000108 %		
8	4	nickel { nickel chromate } 028-035-00-7 238-766-5 14721-18-7		41 mg/kg	2.976	122.027 mg/kg	0.0122 %		
9	4	selenium { nickel selenate } 028-031-00-5 239-125-2 15060-62-5		<0.5 mg/kg	2.554	<1.277 mg/kg	<0.000128 %		<lod< th=""></lod<>
10	4	zinc { zinc chromate } 024-007-00-3 236-878-9 13530-65-9		130 mg/kg	2.774	360.639 mg/kg	0.0361 %		
11	0	TPH (C6 to C40) petroleum group		<10 mg/kg		<10 mg/kg	<0.001 %		<lod< th=""></lod<>
12	8	pH PH		7.2 pH		7.2 pH	7.2 pH		
13		naphthalene 601-052-00-2 202-049-5 91-20-3		<0.1 mg/kg		<0.1 mg/kg	<0.00001 %		<lod< th=""></lod<>
14	0	acenaphthylene 205-917-1 208-96-8		<0.1 mg/kg		<0.1 mg/kg	<0.00001 %		<lod< th=""></lod<>
15	8	acenaphthene 201-469-6 83-32-9		<0.1 mg/kg		<0.1 mg/kg	<0.00001 %		<lod< th=""></lod<>

#		Determinand CLP index number EC Number CAS Number	CLP Note	User entered data	Conv. Factor	Compound conc.	Classification value	MC Applied	Conc. Not Used
16		fluorene		<0.1 mg/kg		<0.1 mg/kg	<0.00001 %		<lod< th=""></lod<>
		201-695-5 86-73-7							
17	۲	phenanthrene		<0.1 mg/kg		<0.1 mg/kg	<0.00001 %		<lod< td=""></lod<>
		201-581-5 85-01-8							
18	۲	anthracene		<0.1 mg/kg		<0.1 mg/kg	<0.00001 %		<lod< td=""></lod<>
		204-371-1 120-12-7							
19	0	fluoranthene		0.2 ma/ka		0.2 mg/kg	0.00002 %		
		205-912-4 206-44-0							
20	۵	pyrene		0.2 ma/ka		0.2 mg/kg	0.00002 %		
		204-927-3 129-00-0							
21		benzo[a]anthracene		0.2 ma/ka		0.2 ma/ka	0.00002 %		
		601-033-00-9 200-280-6 56-55-3							
22		chrysene		0.2 ma/ka		0.2 ma/ka	0 00002 %		
		601-048-00-0 205-923-4 218-01-9					0.00002 /0		
23		benzo[b]fluoranthene		0.1 ma/ka		0.1 ma/ka	0 00001 %		
20		601-034-00-4 205-911-9 205-99-2		0.1 119/109		0.1 119/19	0.00001 /0		
24		benzo[k]fluoranthene		<0.1 ma/ka		<0.1 ma/ka	<0.00001 %		
24		601-036-00-5 205-916-6 207-08-9		<0.1 IIIg/kg		<0.1 mg/kg	<0.00001 /0		LOD
25		benzo[a]pyrene; benzo[def]chrysene		0.1 ma/ka		0.1 ma/ka	0.00001 %		
25		601-032-00-3 200-028-5 50-32-8		0.1 119/Kg		0.1 119/109	0.00001 /0		
26		indeno[123-cd]pyrene		0.2 ma/ka		0.2 ma/ka	0 00002 %		
20		205-893-2 193-39-5		0.2 119/kg		0.2 119/kg	0.00002 /8		
27		dibenz[a,h]anthracene		-0.1 ma/ka		<0.1 ma//ca	<0.00001.%		
21		601-041-00-2 200-181-8 53-70-3		<0.1 111g/kg		<0.1 111g/kg	<0.00001 %		<lod< td=""></lod<>
20	٥	benzo[ghi]perylene		0.1 malles		0.1 malle	0.00001.9/		
20		205-883-8 191-24-2		0.1 mg/kg		0.1 mg/kg	0.00001 %		
		· · · · · ·				Total:	0.0669 %		

Key

User supplied data

Determinand values ignored for classification, see column 'Conc. Not Used' for reason

Determinand defined or amended by HazWasteOnline (see Appendix A) 0

Speciated Determinand - Unless the Determinand is Note 1, the Conversion Factor is used to calculate the compound 4

concentration

<LOD Below limit of detection

ND Not detected

 $[\]label{eq:CLP:Note 1} \mbox{ Only the metal concentration has been used for classification}$

Classification of sample: WS4

. - --Non Hazardous Waste Classified as 17 05 04 in the List of Waste

Sample details

Sample Name: WS4	LoW Code:	17: Construction and Demolition Wastes (including excavated soil
Sample Depth:	enapten	from contaminated sites)
0.10 m	Entry:	17 05 04 (Soil and stones other than those mentioned in 17 05
		03)

Hazard properties

None identified

Determinands

Moisture content: 0% No Moisture Correction applied (MC)

#		Determinand CLP index number EC Number CAS Number	CLP Note	User entered data	Conv. Factor	Compound conc.	Classification value	MC Applied	Conc. Not Used
1	4	arsenic { arsenic trioxide } 033-003-00-0 215-481-4 1327-53-3		51 mg/kg	1.32	67.337 mg/kg	0.00673 %		
2	¥	cadmium { cadmium oxide } 048-002-00-0 215-146-2 1306-19-0		0.3 mg/kg	1.142	0.343 mg/kg	0.0000343 %		
3	*	chromium in chromium(III) compounds { Chromium(III) oxide (worst case) } 215-160-9 1308-38-9		49 mg/kg	1.462	71.616 mg/kg	0.00716 %		
4	4	chromium in chromium(VI) compounds { chromium (VI) compounds, with the exception of barium chromate and of compounds specified elsewhere in this Annex }		<1 mg/kg	2.27	<2.27 mg/kg	<0.000227 %		<lod< td=""></lod<>
5	4	copper { dicopper oxide; copper (l) oxide } 029-002-00-X 215-270-7 1317-39-1		31 mg/kg	1.126	34.903 mg/kg	0.00349 %		
6	4	lead { lead chromate } 082-004-00-2 231-846-0 7758-97-6	1	45 mg/kg	1.56	70.192 mg/kg	0.0045 %		
7	4	mercury { mercury dichloride } 080-010-00-X 231-299-8 7487-94-7		0.08 mg/kg	1.353	0.108 mg/kg	0.0000108 %		
8	¥	nickel { nickel chromate } 028-035-00-7 238-766-5 14721-18-7		38 mg/kg	2.976	113.098 mg/kg	0.0113 %		
9	4	selenium { nickel selenate } 028-031-00-5 239-125-2 15060-62-5		<0.5 mg/kg	2.554	<1.277 mg/kg	<0.000128 %		<lod< td=""></lod<>
10	4	zinc { <mark>zinc chromate</mark> } 024-007-00-3 236-878-9 [13530-65-9		160 mg/kg	2.774	443.863 mg/kg	0.0444 %		
11	۲	рН РН		7 pH		7 pH	7рН		
				· · · · · · · · · · · · · · · · · · ·		Total:	0.078 %		

Key	
	User supplied data
	Determinand values ignored for classification, see column 'Conc. Not Used' for reason
0	Determinand defined or amended by HazWasteOnline (see Appendix A)
4	Speciated Determinand - Unless the Determinand is Note 1, the Conversion Factor is used to calculate the compound concentration
<lod< th=""><th>Below limit of detection</th></lod<>	Below limit of detection
ND	Not detected
CLP: Note 1	Only the metal concentration has been used for classification

Classification of sample: WS9

. - --Non Hazardous Waste Classified as 17 05 04 in the List of Waste

Sample details

Sample Name:	LoW Code:	
WS9	Chapter:	17: Cons
Sample Depth:		from cont
0.10 m	Entry:	<mark>17 05 04</mark>

truction and Demolition Wastes (including excavated soil taminated sites) (Soil and stones other than those mentioned in 17 05 03)

Hazard properties

None identified

Determinands

Moisture content: 0% No Moisture Correction applied (MC)

#		CLP index number EC Number CAS Number	CLP Note	User entered data	Conv. Factor	Compound conc.	Classification value	MC Applied	Conc. Not Used
1	4	arsenic { arsenic trioxide } 033-003-00-0 215-481-4 1327-53-3		13 mg/kg	1.32	17.164 mg/kg	0.00172 %	<	
2	4	cadmium { cadmium oxide } 048-002-00-0 215-146-2 1306-19-0		<0.1 mg/kg	1.142	<0.114 mg/kg	<0.0000114 %		<lod< th=""></lod<>
3	4	chromium in chromium(III) compounds { Chromium(III) oxide (worst case) } 215-160-9 1308-38-9		50 mg/kg	1.462	73.078 mg/kg	0.00731 %		
4	4	chromium in chromium(VI) compounds { chromium (VI) compounds, with the exception of barium chromate and of compounds specified elsewhere in this Annex } 024-017-00-8		<1 mg/kg	2.27	<2.27 mg/kg	<0.000227 %		<lod< th=""></lod<>
5	4	copper { dicopper oxide; copper (I) oxide } 029-002-00-X 215-270-7 1317-39-1		34 mg/kg	1.126	38.28 mg/kg	0.00383 %		
6	4	lead { lead chromate } 082-004-00-2 231-846-0 7758-97-6	1	22 mg/kg	1.56	34.316 mg/kg	0.0022 %		
7	4	mercury { mercury dichloride } 080-010-00-X 231-299-8 7487-94-7		<0.05 mg/kg	1.353	<0.0677 mg/kg	<0.00000677 %		<lod< th=""></lod<>
8	4	nickel { nickel chromate } 028-035-00-7 238-766-5 14721-18-7		35 mg/kg	2.976	104.169 mg/kg	0.0104 %		
9	4	selenium { nickel selenate } 028-031-00-5 239-125-2 15060-62-5		<0.5 mg/kg	2.554	<1.277 mg/kg	<0.000128 %		<lod< th=""></lod<>
10	4	zinc { zinc chromate } 024-007-00-3 236-878-9 13530-65-9		100 mg/kg	2.774	277.415 mg/kg	0.0277 %		
11	0	TPH (C6 to C40) petroleum group		<10 mg/kg		<10 mg/kg	<0.001 %		<lod< th=""></lod<>
12	0	рН PH		6.4 pH		6.4 pH	6.4 pH		
13		naphthalene 601-052-00-2 202-049-5 91-20-3		<0.1 mg/kg		<0.1 mg/kg	<0.00001 %		<lod< th=""></lod<>
14	0	acenaphthylene 205-917-1 208-96-8		<0.1 mg/kg		<0.1 mg/kg	<0.00001 %		<lod< th=""></lod<>
15	8	acenaphthene 201-469-6 83-32-9		<0.1 mg/kg		<0.1 mg/kg	<0.00001 %		<lod< th=""></lod<>

#		Determinand CLP index number EC Number CAS Number	CLP Note	User entered data	Conv. Factor	Compound conc.	Classification value	MC Applied	Conc. Not Used
16	8	fluorene		<0.1 mg/kg		<0.1 mg/kg	<0.00001 %		<lod< th=""></lod<>
		201-695-5 86-73-7							
17	8	phenanthrene		<0.1 mg/kg		<0.1 mg/kg	<0.00001 %		<lod< td=""></lod<>
		201-581-5 85-01-8							
18	0	anthracene		<0.1 mg/kg		<0.1 mg/kg	<0.00001 %		<lod< td=""></lod<>
		204-371-1 120-12-7							
19	•	fluoranthene		<0.1 ma/ka		<0.1 ma/ka	<0.00001 %		<lod< td=""></lod<>
		205-912-4 206-44-0							
20	8	pyrene		<0.1 ma/ka		<0.1 ma/ka	<0.00001 %		<lod< td=""></lod<>
		204-927-3 129-00-0							
21		benzo[a]anthracene		<0.1 ma/ka		<0.1 ma/ka	<0 00001 %		<lod< td=""></lod<>
		601-033-00-9 200-280-6 56-55-3							
22		chrysene		<0.1 ma/ka		<0.1 ma/ka	<0.00001 %		<1 OD
		601-048-00-0 205-923-4 218-01-9		<0.1 mg/ng		soll inging	10.00001 /0		LOD
23		benzo[b]fluoranthene		<0.1 ma/ka		<0.1 ma/ka	~0.00001 %		
20		601-034-00-4 205-911-9 205-99-2		<0.1 mg/ng		<0.1 mg/ng	20.00001 /0		LOD
24		benzo[k]fluoranthene		<0.1 ma/ka		<0.1 mg/kg	<0.00001.%		
24		601-036-00-5 205-916-6 207-08-9		<0.1 IIIg/kg		<0.1 IIIg/kg	<0.00001 /8		LOD
25		benzo[a]pyrene; benzo[def]chrysene		<0.1 ma/ka		<0.1 mg/kg	<0.00001.%		
25		601-032-00-3 200-028-5 50-32-8		<0.1 IIIg/kg		<0.1 IIIg/kg	<0.00001 /8		<lod< td=""></lod<>
26		indeno[123-cd]pyrene		-0.1 ma/ka		-0.1 ma/ka	-0.00001.9/		
20		205-893-2 193-39-5		<0.1 Hig/kg		<0.1 mg/kg	<0.00001 %		<lod< td=""></lod<>
27		dibenz[a,h]anthracene		-0.1 ma/ka		-0.1 ma/ka	-0.00001.9/		
21		601-041-00-2 200-181-8 53-70-3		<0.1 mg/kg		<0.1 mg/kg	C0.00001 %		<lud< td=""></lud<>
20		benzo[ghi]perylene		-0.1		-0.1	-0.00001.9/		
20		205-883-8 191-24-2		<0.1 ing/kg		<0.1 mg/kg	<0.00001 %		<lud< td=""></lud<>
		· · · · · ·				Total:	0.0547 %		

Key

User supplied data

Determinand values ignored for classification, see column 'Conc. Not Used' for reason

Determinand defined or amended by HazWasteOnline (see Appendix A) 0

Speciated Determinand - Unless the Determinand is Note 1, the Conversion Factor is used to calculate the compound 4

concentration

<LOD Below limit of detection

ND Not detected

 $\label{eq:CLP:Note 1} \mbox{ Only the metal concentration has been used for classification}$

Classification of sample: WS17

. -Non Hazardous Waste Classified as 17 05 04 in the List of Waste

Sample details

Sample Name:	LoW Code:	
WS17	Chapter:	17: Cons
Sample Depth:		from con
0.10 m	Entry:	<mark>17 05 04</mark>

struction and Demolition Wastes (including excavated soil ntaminated sites) (Soil and stones other than those mentioned in 17 05 03)

Hazard properties

None identified

Determinands

Moisture content: 0% No Moisture Correction applied (MC)

#		CLP index number EC Number CAS Number	CLP Note	User entered data	Conv. Factor	Compound conc.	Classification value	MC Applied	Conc. Not Used
1	4	arsenic { arsenic trioxide } 033-003-00-0 215-481-4 1327-53-3		20 mg/kg	1.32	26.407 mg/kg	0.00264 %	<	
2	\$	cadmium { cadmium oxide } 048-002-00-0 215-146-2 1306-19-0		0.3 mg/kg	1.142	0.343 mg/kg	0.0000343 %		
3	4	chromium in chromium(III) compounds { Chromium(III) oxide (worst case) } 215-160-9 [1308-38-9		41 mg/kg	1.462	59.924 mg/kg	0.00599 %		
4	\$	chromium in chromium(VI) compounds { chromium (VI) compounds, with the exception of barium chromate and of compounds specified elsewhere in this Annex } 024-017-00-8		<1 mg/kg	2.27	<2.27 mg/kg	<0.000227 %		<lod< th=""></lod<>
5	4	copper { dicopper oxide; copper (I) oxide } 029-002-00-X 215-270-7 1317-39-1		29 mg/kg	1.126	32.651 mg/kg	0.00327 %		
6	4	lead { lead chromate } 082-004-00-2 231-846-0 7758-97-6	1	64 mg/kg	1.56	99.828 mg/kg	0.0064 %		
7	4	mercury { mercury dichloride } 080-010-00-X 231-299-8 7487-94-7		0.05 mg/kg	1.353	0.0677 mg/kg	0.00000677 %		
8	4	nickel { nickel chromate } 028-035-00-7 238-766-5 14721-18-7		24 mg/kg	2.976	71.43 mg/kg	0.00714 %		
9	4	selenium { nickel selenate } 028-031-00-5 239-125-2 15060-62-5		<0.5 mg/kg	2.554	<1.277 mg/kg	<0.000128 %		<lod< th=""></lod<>
10	4	zinc { zinc chromate } 024-007-00-3 236-878-9 13530-65-9		120 mg/kg	2.774	332.898 mg/kg	0.0333 %		
11	8	TPH (C6 to C40) petroleum group		<10 mg/kg		<10 mg/kg	<0.001 %		<lod< th=""></lod<>
12	0	рН PH		7.5 pH		7.5 pH	7.5 pH		
13		naphthalene 601-052-00-2 202-049-5 91-20-3		<0.1 mg/kg		<0.1 mg/kg	<0.00001 %		<lod< th=""></lod<>
14	0	acenaphthylene 205-917-1 208-96-8		<0.1 mg/kg		<0.1 mg/kg	<0.00001 %		<lod< th=""></lod<>
15	0	acenaphthene 201-469-6 83-32-9		<0.1 mg/kg		<0.1 mg/kg	<0.00001 %		<lod< th=""></lod<>

#		Determinand CLP index number EC Number CAS Number	CLP Note	User entered data	Conv. Factor	Compound conc.	Classification value	MC Applied	Conc. Not Used
16	8	fluorene		<0.1 mg/kg		<0.1 mg/kg	<0.00001 %		<lod< th=""></lod<>
<u> </u>		201-695-5 86-73-7							
17	8	pnenanthrene		0.3 mg/kg		0.3 mg/kg	0.00003 %		
-	-	201-581-5 85-01-8							
18	8	anthracene		<0.1 mg/kg		<0.1 mg/kg	<0.00001 %		<lod< td=""></lod<>
		204-371-1 120-12-7							
19	۲	fluorantnene	ļ	0.8 mg/kg		0.8 mg/kg	0.00008 %		
		205-912-4 206-44-0							
20		bo4.007.0 (400.00.0		0.7 mg/kg		0.7 mg/kg	0.00007 %		
	-	204-927-3 [129-00-0							
21				0.4 mg/kg		0.4 mg/kg	0.00004 %		
22	_	601-033-00-9 200-280-6 p0-55-3						_	
			_	0.4 mg/kg		0.4 mg/kg	0.00004 %		
<u> </u>	-	601-048-00-0 205-923-4 218-01-9	-						
23		benzo[b]fluoranthene		0.3 mg/kg		0.3 mg/kg	0.00003 %		
<u> </u>	-	601-034-00-4 205-911-9 205-99-2							
24		benzo[k]fluoranthene		0.2 mg/kg		0.2 mg/kg	0.00002 %		
<u> </u>	<u> </u>	601-036-00-5 205-916-6 207-08-9							
25		benzo[a]pyrene; benzo[def]chrysene		0.4 mg/kg		0.4 mg/kg	0.00004 %		
		601-032-00-3 200-028-5 50-32-8							
26	۲	indeno[123-cd]pyrene		0.5 mg/kg		0.5 mg/kg	0.00005 %		
		205-893-2 [193-39-5							
27		dibenz[a,h]anthracene	ļ	0.3 mg/kg		0.3 mg/kg	0.00003 %		
		601-041-00-2 200-181-8 53-70-3							
28	۲	benzo[ghi]perylene	ļ	0.2 mg/kg		0.2 mg/kg	0.00002 %		
		205-883-8 191-24-2			9			0.00002 /0	
					Total:	0.0606 %			

Key

User supplied data

Determinand values ignored for classification, see column 'Conc. Not Used' for reason

Determinand defined or amended by HazWasteOnline (see Appendix A) 0

Speciated Determinand - Unless the Determinand is Note 1, the Conversion Factor is used to calculate the compound 4

concentration

<LOD Below limit of detection

ND Not detected

 $\label{eq:CLP:Note 1} \mbox{ Only the metal concentration has been used for classification}$

Classification of sample: WS19

... - --Non Hazardous Waste Classified as 17 05 04 in the List of Waste

Sample details

Sample Name: WS19	LoW Code: Chapter:	17: Constructi
Sample Depth:		from contamin
0.10 m	Entry:	17 05 04 (Soil

on and Demolition Wastes (including excavated soil nated sites) and stones other than those mentioned in 17 05 03)

Hazard properties

None identified

Determinands

Moisture content: 0% No Moisture Correction applied (MC)

#		CLP index number EC Number CAS Number	CLP Note	User entered data	Conv. Factor	Compound conc.	Classification value	MC Applied	Conc. Not Used
1	4	arsenic { arsenic trioxide } 033-003-00-0 215-481-4 1327-53-3		18 mg/kg	1.32	23.766 mg/kg	0.00238 %		
2	4	cadmium { cadmium oxide } 048-002-00-0 215-146-2 1306-19-0		0.2 mg/kg	1.142	0.228 mg/kg	0.0000228 %		
3	4	chromium in chromium(III) compounds { Chromium(III) oxide (worst case) } 215-160-9 1308-38-9		31 mg/kg	1.462	45.308 mg/kg	0.00453 %		
4	\$	chromium in chromium(VI) compounds { chromium (VI) compounds, with the exception of barium chromate and of compounds specified elsewhere in this Annex } 024-017-00-8		<1 mg/kg	2.27	<2.27 mg/kg	<0.000227 %		<lod< th=""></lod<>
5	4	copper { dicopper oxide; copper (I) oxide } 029-002-00-X 215-270-7 1317-39-1		26 mg/kg	1.126	29.273 mg/kg	0.00293 %		
6	4	lead { lead chromate } 082-004-00-2 231-846-0 7758-97-6	1	26 mg/kg	1.56	40.555 mg/kg	0.0026 %		
7	4	mercury { mercury dichloride } 080-010-00-X 231-299-8 7487-94-7		0.11 mg/kg	1.353	0.149 mg/kg	0.0000149 %		
8	4	nickel { nickel chromate } 028-035-00-7 238-766-5 14721-18-7		21 mg/kg	2.976	62.502 mg/kg	0.00625 %		
9	4	selenium { nickel selenate } 028-031-00-5 239-125-2 15060-62-5		<0.5 mg/kg	2.554	<1.277 mg/kg	<0.000128 %		<lod< th=""></lod<>
10	4	zinc { zinc chromate } 024-007-00-3 236-878-9 13530-65-9		160 mg/kg	2.774	443.863 mg/kg	0.0444 %		
11	0	TPH (C6 to C40) petroleum group		<10 mg/kg		<10 mg/kg	<0.001 %		<lod< th=""></lod<>
12	0	рН РН		7.4 pH		7.4 pH	7.4 pH		
13		naphthalene 601-052-00-2 202-049-5 91-20-3		<0.1 mg/kg		<0.1 mg/kg	<0.00001 %		<lod< th=""></lod<>
14	8	acenaphthylene 205-917-1 208-96-8		<0.1 mg/kg		<0.1 mg/kg	<0.00001 %		<lod< th=""></lod<>
15	8	acenaphthene 201-469-6 83-32-9		<0.1 mg/kg		<0.1 mg/kg	<0.00001 %		<lod< th=""></lod<>

#		Determinand CLP index number EC Number CAS Number	CLP Note	User entered data	Conv. Factor	Compound conc.	Classification value	MC Applied	Conc. Not Used
16	0	fluorene		<0.1 mg/kg		<0.1 mg/kg	<0.00001 %		<lod< th=""></lod<>
<u> </u>		201-695-5 86-73-7							
17	0	phenanthrene		<0.1 mg/kg		<0.1 mg/kg	<0.00001 %		<lod< td=""></lod<>
		201-581-5 85-01-8							
18	۲	anthracene		<0.1 mg/kg		<0.1 mg/kg	<0.00001 %		<lod< td=""></lod<>
		204-371-1 120-12-7							
19	۲	fluoranthene		0.2 ma/ka		0.2 mg/kg	0.00002 %		
		205-912-4 206-44-0							
20	٥	pyrene		0.2 ma/ka		0.2 mg/kg	0.00002 %		
		204-927-3 129-00-0							
21		benzo[a]anthracene		0.2 ma/ka		0.2 ma/ka	0.00002 %		
		601-033-00-9 200-280-6 56-55-3							
22		chrysene		0.1 ma/ka		0.1 ma/ka	0 00001 %		
		601-048-00-0 205-923-4 218-01-9		0.1 119/109		0.1 119/19	0.00001 /0		
23		benzo[b]fluoranthene		0.2 ma/ka	1	0.2 ma/ka	0 00002 %		
20		601-034-00-4 205-911-9 205-99-2		0.2 mg/kg		0.2 mg/kg	0.00002 %		
24		benzo[k]fluoranthene		0.1 ma/ka		0.1 ma/ka	0 00001 %		
24		601-036-00-5 205-916-6 207-08-9		0.1 119/Kg		0.1 119/Kg	0.00001 /0		
25		benzo[a]pyrene; benzo[def]chrysene		0.2 ma/ka		0.2 ma/ka	0 00002 %		
20		601-032-00-3 200-028-5 50-32-8		0.2 119/kg		0.2 119/Kg	0.00002 /8		
26	0	indeno[123-cd]pyrene		0.2 ma/ka		0.2 ma/ka	0 00002 %		
20		205-893-2 193-39-5		0.2 119/kg		0.2 119/kg	0.00002 /8		
27		dibenz[a,h]anthracene		0.2 ma/ka		0.2 ma/ka	0 00002 %		
27		601-041-00-2 200-181-8 53-70-3		0.2 119/kg		0.2 119/kg	0.00002 /8		
28		benzo[ghi]perylene		-0.1 maller		-0.1 mailia	-0.00001.9/		
		205-883-8 191-24-2		<0.1 ING/Kg	g	<0.1	<0.1 mg/kg	J/kg <0.00001 %	
		· · · · · · · · · · · · · · · · · · ·				Total:	0.0647 %		

Key

User supplied data

Determinand values ignored for classification, see column 'Conc. Not Used' for reason

Determinand defined or amended by HazWasteOnline (see Appendix A) 0

Speciated Determinand - Unless the Determinand is Note 1, the Conversion Factor is used to calculate the compound 4

concentration

<LOD Below limit of detection

ND Not detected

 $[\]label{eq:CLP:Note 1} \mbox{ Only the metal concentration has been used for classification}$

Classification of sample: WS22

. Non Hazardous Waste Classified as 17 05 04 in the List of Waste

Sample details

Sample Name:	LoW Code:	
WS22	Chapter:	17: Cons
Sample Depth:		from cont
0.10 m	Entry:	<mark>17 05 04</mark>

truction and Demolition Wastes (including excavated soil taminated sites) (Soil and stones other than those mentioned in 17 05 03)

Hazard properties

None identified

Determinands

Moisture content: 0% No Moisture Correction applied (MC)

#		Determinand CLP index number EC Number CAS Number	CLP Note	User entered data	Conv. Factor	Compound conc.	Classification value	MC Applied	Conc. Not Used
1	4	arsenic { arsenic trioxide } 033-003-00-0 215-481-4 1327-53-3		18 mg/kg	1.32	23.766 mg/kg	0.00238 %		
2	4	cadmium { cadmium oxide } 048-002-00-0 215-146-2 1306-19-0		<0.1 mg/kg	1.142	<0.114 mg/kg	<0.0000114 %		<lod< td=""></lod<>
3	4	chromium in chromium(III) compounds { Chromium(III) oxide (worst case) } 215-160-9 [1308-38-9		35 mg/kg	1.462	51.154 mg/kg	0.00512 %		
4	~	chromium in chromium(VI) compounds { chromium (VI) compounds, with the exception of barium chromate and of compounds specified elsewhere in this Annex } 024-017-00-8		<1 mg/kg	2.27	<2.27 mg/kg	<0.000227 %		<lod< th=""></lod<>
5	4	copper { dicopper oxide; copper (I) oxide } 029-002-00-X 215-270-7 1317-39-1		23 mg/kg	1.126	25.895 mg/kg	0.00259 %		
6	~	lead { lead chromate } 082-004-00-2 231-846-0 7758-97-6	1	20 mg/kg	1.56	31.196 mg/kg	0.002 %		
7	-	mercury { mercury dichloride } 080-010-00-X 231-299-8 7487-94-7		<0.05 mg/kg	1.353	<0.0677 mg/kg	<0.0000677 %		<lod< td=""></lod<>
8	~	nickel { nickel chromate } 028-035-00-7 238-766-5 14721-18-7		22 mg/kg	2.976	65.478 mg/kg	0.00655 %		
9	4	selenium { nickel selenate } 028-031-00-5 239-125-2 15060-62-5		<0.5 mg/kg	2.554	<1.277 mg/kg	<0.000128 %		<lod< td=""></lod<>
10	4	zinc { zinc chromate } 024-007-00-3 236-878-9 13530-65-9		68 mg/kg	2.774	188.642 mg/kg	0.0189 %		
11	8	рН РН		7.1 рН		7.1 pH	7.1 pH		
12		naphthalene 601-052-00-2 202-049-5 91-20-3		<0.1 mg/kg		<0.1 mg/kg	<0.00001 %		<lod< td=""></lod<>
13	•	acenaphthylene 205-917-1 208-96-8		<0.1 mg/kg		<0.1 mg/kg	<0.00001 %		<lod< td=""></lod<>
14	•	acenaphthene 201-469-6 83-32-9		<0.1 mg/kg		<0.1 mg/kg	<0.00001 %		<lod< td=""></lod<>
15	•	fluorene 201-695-5 86-73-7		<0.1 mg/kg		<0.1 mg/kg	<0.00001 %		<lod< td=""></lod<>

#		CLP index number	Determinand EC Number	CAS Number	CLP Note	User entered	d data	Conv. Factor	Compound conc.	Classification value	MC Applied	Conc. Not Used
10	8	phenanthrene				-0.1			.0.1	-0.00001.0/		
16		2	201-581-5	85-01-8	-	<0.1	тg/кg		<0.1 mg/kg	<0.00001 %		<lod< td=""></lod<>
17		anthracene		·		-0.1	ma/ka		<0.1 mg/kg	<0.00001.94		
11		2	204-371-1	120-12-7		<0.1	тту/ку		<0.1 111g/kg	<0.00001 %		<lod< th=""></lod<>
18		fluoranthene			0.3	ma/ka		0.3 ma/ka	0.00002.0/			
10			205-912-4	206-44-0		0.5	шу/ку		0.0 111g/kg	0.00003 /8		
19	0	pyrene			0.3	ma/ka		0.3 ma/ka	0 00003 %			
		2	204-927-3	129-00-0		0.0	ing/kg		0.0 mg/kg	0.00000 //		
20		benzo[a]anthracene	•			0.2	ma/ka		0.2 ma/ka	0 00002 %		
		601-033-00-9 2	200-280-6	56-55-3		0.2	iiig/iig			0.00002 //		
21		chrysene				0.2 r	ma/ka		0.2 ma/ka	0 00002 %		
		601-048-00-0 2	205-923-4	218-01-9		0.2	iiig/iig			0.00002 //		
22		benzo[b]fluoranthen	e			0.1	ma/ka		0.1 ma/ka	0 00001 %		
		601-034-00-4 2	205-911-9	205-99-2								
23		benzo[k]fluoranthen	e			0.1	ma/ka		0.1 ma/ka	0 00001 %		
		601-036-00-5 2	205-916-6	207-08-9								
24		benzo[a]pyrene; ber	nzo[def]chrysene			0.2	ma/ka		0.2 ma/ka	0 00002 %		
		601-032-00-3 2	200-028-5	50-32-8		0.2				0.00002 //		
25		indeno[123-cd]pyrer	ne			0.3	ma/ka		0.3 ma/ka	0 00003 %		
			205-893-2	193-39-5		0.0						
26		dibenz[a,h]anthrace	ne			0.1	ma/ka		0.1 ma/ka	0 00001 %		
		601-041-00-2 2	200-181-8	53-70-3		0.1	iiig/iig			0.00001 //		
27		benzo[ghi]perylene				0.1	0.1 mg/kg		0.1 ma/ka	/kg 0.00001 %		
27		2	205-883-8	191-24-2		0.1			0.1 119/kg	0.00001 /0		
									Total:	0.0381 %		

Key	
	User supplied data
	Determinand values ignored for classification, see column 'Conc. Not Used' for reason
	Determinand defined or amended by HazWasteOnline (see Appendix A)
44	Speciated Determinand - Unless the Determinand is Note 1, the Conversion Factor is used to calculate the compound concentration
<lod< th=""><th>Below limit of detection</th></lod<>	Below limit of detection
ND	Not detected
CLP: Note 1	Only the metal concentration has been used for classification

Report created by Sarah Grieves on 11 Dec 2020

Appendix A: Classifier defined and non CLP determinands

echromium(III) oxide (worst case) (EC Number: 215-160-9, CAS Number: 1308-38-9)

Description/Comments: Data from C&L Inventory Database Data source: https://echa.europa.eu/information-on-chemicals/cl-inventory-database/-/discli/details/33806 Data source date: 17 Jul 2015 Hazard Statements: Acute Tox. 4 H332 , Acute Tox. 4 H302 , Eye Irrit. 2 H319 , STOT SE 3 H335 , Skin Irrit. 2 H315 , Resp. Sens. 1 H334 , Skin Sens. 1 H317 , Repr. 1B H360FD , Aquatic Acute 1 H400 , Aquatic Chronic 1 H410

• TPH (C6 to C40) petroleum group (CAS Number: TPH)

Description/Comments: Hazard statements taken from WM3 1st Edition 2015; Risk phrases: WM2 3rd Edition 2013 Data source: WM3 1st Edition 2015 Data source date: 25 May 2015 Hazard Statements: Flam. Lig. 3 H226 , Asp. Tox. 1 H304 , STOT RE 2 H373 , Muta. 1B H340 , Carc. 1B H350 , Repr. 2 H361d , Aquatic Chronic 2 H411

pH (CAS Number: PH)

Description/Comments: Appendix C4 Data source: WM3 1st Edition 2015 Data source date: 25 May 2015 Hazard Statements: None.

acenaphthylene (EC Number: 205-917-1, CAS Number: 208-96-8)

Description/Comments: Data from C&L Inventory Database Data source: http://echa.europa.eu/web/guest/information-on-chemicals/cl-inventory-database Data source date: 17 Jul 2015 Hazard Statements: Acute Tox. 4 H302 , Acute Tox. 1 H330 , Acute Tox. 1 H310 , Eye Irrit. 2 H319 , STOT SE 3 H335 , Skin Irrit. 2 H315

acenaphthene (EC Number: 201-469-6, CAS Number: 83-32-9)

Description/Comments: Data from C&L Inventory Database Data source: http://echa.europa.eu/web/guest/information-on-chemicals/cl-inventory-database Data source date: 17 Jul 2015 Hazard Statements: Eye Irrit. 2 H319, STOT SE 3 H335, Skin Irrit. 2 H315, Aquatic Acute 1 H400, Aquatic Chronic 1 H410, Aquatic Chronic 2 H411

^e fluorene (EC Number: 201-695-5, CAS Number: 86-73-7)

Description/Comments: Data from C&L Inventory Database Data source: http://echa.europa.eu/web/guest/information-on-chemicals/cl-inventory-database Data source date: 06 Aug 2015 Hazard Statements: Aquatic Acute 1 H400, Aquatic Chronic 1 H410

• phenanthrene (EC Number: 201-581-5, CAS Number: 85-01-8)

Description/Comments: Data from C&L Inventory Database Data source: http://echa.europa.eu/web/guest/information-on-chemicals/cl-inventory-database Data source date: 06 Aug 2015 Hazard Statements: Acute Tox. 4 H302, Eye Irrit. 2 H319, STOT SE 3 H335, Carc. 2 H351, Skin Sens. 1 H317, Aquatic Acute 1 H400 , Aquatic Chronic 1 H410 , Skin Irrit. 2 H315

^a anthracene (EC Number: 204-371-1, CAS Number: 120-12-7)

Description/Comments: Data from C&L Inventory Database Data source: http://echa.europa.eu/web/guest/information-on-chemicals/cl-inventory-database Data source date: 17 Jul 2015 Hazard Statements: Eye Irrit. 2 H319, STOT SE 3 H335, Skin Irrit. 2 H315, Skin Sens. 1 H317, Aquatic Acute 1 H400, Aquatic Chronic 1 H410

Iluoranthene (EC Number: 205-912-4, CAS Number: 206-44-0)

Description/Comments: Data from C&L Inventory Database Data source: http://echa.europa.eu/web/guest/information-on-chemicals/cl-inventory-database Data source date: 21 Aug 2015

Hazard Statements: Acute Tox. 4 H302 , Aquatic Acute 1 H400 , Aquatic Chronic 1 H410

Report created by Sarah Grieves on 11 Dec 2020

[®] pyrene (EC Number: 204-927-3, CAS Number: 129-00-0)

Description/Comments: Data from C&L Inventory Database; SDS Sigma Aldrich 2014 Data source: http://echa.europa.eu/web/guest/information-on-chemicals/cl-inventory-database Data source date: 21 Aug 2015 Hazard Statements: Skin Irrit. 2 H315, Eye Irrit. 2 H319, STOT SE 3 H335, Aquatic Acute 1 H400, Aquatic Chronic 1 H410

indeno[123-cd]pyrene (EC Number: 205-893-2, CAS Number: 193-39-5)

Description/Comments: Data from C&L Inventory Database Data source: http://echa.europa.eu/web/guest/information-on-chemicals/cl-inventory-database Data source date: 06 Aug 2015 Hazard Statements: Carc. 2 H351

• benzo[ghi]perylene (EC Number: 205-883-8, CAS Number: 191-24-2)

Description/Comments: Data from C&L Inventory Database; SDS Sigma Aldrich 28/02/2015 Data source: http://echa.europa.eu/web/guest/information-on-chemicals/cl-inventory-database Data source date: 23 Jul 2015 Hazard Statements: Aquatic Acute 1 H400, Aquatic Chronic 1 H410

Appendix B: Rationale for selection of metal species

arsenic {arsenic trioxide}

Reasonable case CLP species based on hazard statements/molecular weight and most common (stable) oxide of arsenic. Industrial sources include: smelting; main precursor to other arsenic compounds (edit as required)

cadmium {cadmium oxide}

Reasonable case CLP species based on hazard statements/molecular weight, very low solubility in water. Industrial sources include: electroplating baths, electrodes for storage batteries, catalysts, ceramic glazes, phosphors, pigments and nematocides. (edit as required) Worst case compounds in CLP: cadmium sulphate, chloride, fluoride & iodide not expected as either very soluble and/or compound's industrial usage not related to site history (edit as required)

chromium in chromium(III) compounds {chromium(III) oxide (worst case)}

Reasonable case species based on hazard statements/molecular weight. Industrial sources include: tanning, pigment in paint, inks and glass (edit as required)

chromium in chromium(VI) compounds {chromium (VI) compounds, with the exception of barium chromate and of compounds specified elsewhere in this Annex}

Worst case species based on hazard statements/molecular weight (edit as required)

copper {dicopper oxide; copper (I) oxide}

Reasonable case CLP species based on hazard statements/molecular weight and insolubility in water. Industrial sources include: oxidised copper metal, brake pads, pigments, antifouling paints, fungicide. (edit as required) Worse case copper sulphate is very soluble and likely to have been leached away if ever present and/or not enough soluble sulphate detected. (edit as required)

lead {lead chromate}

Worst case CLP species based on hazard statements/molecular weight (edit as required)

mercury {mercury dichloride}

Worst case CLP species based on hazard statements/molecular weight (edit as required)

nickel {nickel chromate}

Worst case CLP species based on hazard statements/molecular weight (edit as required)

selenium {nickel selenate}

Worst case CLP species based on hazard statements/molecular weight (edit as required)

zinc {zinc chromate}

Worst case CLP species based on hazard statements/molecular weight (edit as required)

Appendix C: Version

HazWasteOnline Classification Engine: WM3 1st Edition v1.1, May 2018 HazWasteOnline Classification Engine Version: 2020.346.4563.8832 (11 Dec 2020) HazWasteOnline Database: 2020.346.4563.8832 (11 Dec 2020)

This classification utilises the following guidance and legislation: **WM3 v1.1 - Waste Classification** - 1st Edition v1.1 - May 2018 **CLP Regulation** - Regulation 1272/2008/EC of 16 December 2008 1st ATP - Regulation 790/2009/EC of 10 August 2009 2nd ATP - Regulation 286/2011/EC of 10 March 2011 3rd ATP - Regulation 618/2012/EU of 10 July 2012 4th ATP - Regulation 487/2013/EU of 8 May 2013 Correction to 1st ATP - Regulation 758/2013/EU of 7 August 2013 5th ATP - Regulation 944/2013/EU of 2 October 2013 6th ATP - Regulation 605/2014/EU of 5 June 2014 WFD Annex III replacement - Regulation 1357/2014/EU of 18 December 2014 Revised List of Waste 2014 - Decision 2014/955/EU of 18 December 2014 7th ATP - Regulation 2015/1221/EU of 24 July 2015 8th ATP - Regulation (EU) 2016/918 of 19 May 2016 9th ATP - Regulation (EU) 2016/1179 of 19 July 2016 **10th ATP** - Regulation (EU) 2017/776 of 4 May 2017 **HP14 amendment** - Regulation (EU) 2017/997 of 8 June 2017 13th ATP - Regulation (EU) 2018/1480 of 4 October 2018 **14th ATP** - Regulation (EU) 2010/1400 of 4 October 2019 **15th ATP** - Regulation (EU) 2020/217 of 4 October 2019 **15th ATP** - Regulation (EU) 2020/1182 of 19 May 2020 POPs Regulation 2019 - Regulation (EU) 2019/1021 of 20 June 2019

Appendix F Geotechnical Testing Results

Test Report:	Determinat BS 1377: Pa	ion of California Bearing Ratio (CBR) art 4: 1990 clause 7		Report Date:	10.12.2020
Client:	Dunelm Geo	otechnical & Environmental	Lab ref: Client ref:	D10208-14877 WS01	
Site:	Gartree 2 G	artree	Date tested:	09.12.2020	
			Test conducted by:	AG	
Sample description:	Clay				
Test location:	BH WS01 0	.5m	Surcharge (kg):	12kg	
Variation from standard	d method:	None	Test depth (m):	0.5m	
Method of sample prep	aration:	BS 1377-1:1990	Soaking details:	Not soaked	
>20mm present:	No				

Test Results

Comments: Moisture content carried out in accordance with BS 1377: Part 2: 1990 clause 3.2

Signed:

Authorised Signatories: [✓] M. Aiston (Directo [] G Dresser (Director)

For & on behalf of Dunelm Testing Ltd

Page: 1 of 2

Test Report:	Determinat BS 1377: Pa	ion of California Bearing Ratio (CBR) art 4: 1990 clause 7		Report Date:	10.12.2020
Client:	Dunelm Geo	otechnical & Environmental	Lab ref: Client ref:	D10208-14877 WS01	
Site:	Gartree 2 G	artree	Date tested:	09.12.2020	
			Test conducted by:	AG	
Sample description:	Clay				
Test location:	BH WS01 0	.5m	Surcharge (kg):	12kg	
Variation from standard	d method:	None	Test depth (m):	-	
Method of sample prep	aration:	BS 1377-1:1990	Soaking details:	Not soaked	
>20mm present:	No				

Test Results

Comments: Moisture content carried out in accordance with BS 1377: Part 2: 1990 clause 3.2 Average CBR N/A

Signed:

Authorised Signatories: [✓] M. Aiston (Director) [] G Dresser (Director)

For & on behalf of Dunelm Testing Ltd

Page: 2 of 2

Test Report:Determination of California Bearing Ratio (CBR)BS 1377: Part 4: 1990 clause 7				Report Date:	10.12.2020
Client:	Dunelm Geo	otechnical & Environmental	Lab ref: Client ref:	D10208-14881 WS07	
Site:	Gartree 2 G	artree	Date tested:	09.12.2020	
			Test conducted by:	AG	
Sample description:	Clay				
Test location:	BH WS07 0	.5m	Surcharge (kg):	12kg	
Variation from standard	d method:	None	Test depth (m):	0.5m	
Method of sample prep	aration:	BS 1377-1:1990	Soaking details:	Not soaked	
>20mm present:	No				

Test Results

Comments: Moisture content carried out in accordance with BS 1377: Part 2: 1990 clause 3.2

Signed:

Authorised Signatories: [✓] M. Aiston (Directo [] G Dresser (Director)

For & on behalf of Dunelm Testing Ltd

Page: 1 of 2

Test Report:	Determinat BS 1377: Pa	tion of California Bearing Ratio (CBR) art 4: 1990 clause 7		Report Date:	10.12.2020
Client:	Dunelm Ge	otechnical & Environmental	Lab ref: Client ref:	D10208-14881 WS07	
Site:	Gartree 2 G	artree	Date tested:	09.12.2020	
			Test conducted by:	AG	
Sample description:	Clay				
Test location:	BH WS07 0	.5m	Surcharge (kg):	12kg	
Variation from standard	d method:	None	Test depth (m):	-	
Method of sample prep	aration:	BS 1377-1:1990	Soaking details:	Not soaked	
>20mm present:	No				

Test Results

Comments: Moisture content carried out in accordance with BS 1377: Part 2: 1990 clause 3.2 Average CBR N/A

Signed:

Authorised Signatories: [✓] M. Aiston (Director) [] G Dresser (Director)

For & on behalf of Dunelm Testing Ltd

Page: 2 of 2

Test Report:	Determination of California Bearing Ratio (CBR) BS 1377: Part 4: 1990 clause 7			Report Date:	10.12.2020
Client:	Dunelm Geo	otechnical & Environmental	Lab ref: Client ref:	D10208-14883 WS10	
Site:	Gartree 2 Gartree		Date tested:	09.12.2020	
Sample description:	Clay		Test conducted by:	AG	
Test location:	BH WS10 0.5m		Surcharge (kg):	12kg	
Variation from standard method:		None	Test depth (m):	0.5m	
Method of sample preparation:		BS 1377-1:1990	Soaking details:	Not soaked	
>20mm present:	No				

Test Results

Comments: Moisture content carried out in accordance with BS 1377: Part 2: 1990 clause 3.2

Signed:

Authorised Signatories: [✓] M. Aiston (Directo [] G Dresser (Director)

For & on behalf of Dunelm Testing Ltd

Page: 1 of 2

Test Report:	Determination of California Bearing Ratio (CBR) BS 1377: Part 4: 1990 clause 7			Report Date:	10.12.2020
Client:	Dunelm Geo	otechnical & Environmental	Lab ref: Client ref:	D10208-14883 WS10	
Site:	Gartree 2 Gartree		Date tested:	09.12.2020	
			Test conducted by:	AG	
Sample description:	Clay				
Test location:	BH WS10 0.5m		Surcharge (kg):	12kg	
Variation from standard method: N		None	Test depth (m):	-	
Method of sample preparation:		BS 1377-1:1990	Soaking details:	Not soaked	
>20mm present:	No				

Test Results

Comments: Moisture content carried out in accordance with BS 1377: Part 2: 1990 clause 3.2 Average CBR N/A

Signed:

Authorised Signatories: [✓] M. Aiston (Director) [] G Dresser (Director)

For & on behalf of Dunelm Testing Ltd

Page: 2 of 2

Test Report:	Determination of California Bearing Ratio (CBR) BS 1377: Part 4: 1990 clause 7			Report Date:	10.12.2020
Client:	Dunelm Geo	otechnical & Environmental	Lab ref: Client ref:	D10208-14890 WS21	
Site:	Gartree 2 Gartree		Date tested:	09.12.2020	
			Test conducted by:	AG	
Sample description:	Clay				
Test location:	BH WS21 0.5m		Surcharge (kg):	12kg	
Variation from standard method: None		None	Test depth (m):	0.5m	
Method of sample preparation:		BS 1377-1:1990	Soaking details:	Not soaked	
>20mm present:	No				

Test Results

Comments: Moisture content carried out in accordance with BS 1377: Part 2: 1990 clause 3.2

Signed:

Authorised Signatories: [✓] M. Aiston (Directo [] G Dresser (Director)

For & on behalf of Dunelm Testing Ltd

Page: 1 of 2

Test Report:	Determination of California Bearing Ratio (CBR) BS 1377: Part 4: 1990 clause 7			Report Date:	10.12.2020
Client:	Dunelm Geo	otechnical & Environmental	Lab ref: Client ref:	D10208-14890 WS21	
Site:	Gartree 2 Gartree		Date tested:	09.12.2020	
			Test conducted by:	AG	
Sample description:	Clay				
Test location:	BH WS21 0.5m		Surcharge (kg):	12kg	
Variation from standard method: None		None	Test depth (m):	-	
Method of sample preparation:		BS 1377-1:1990	Soaking details:	Not soaked	
>20mm present:	No				

Test Results

Comments: Moisture content carried out in accordance with BS 1377: Part 2: 1990 clause 3.2 Average CBR 3.2%

Signed:

Authorised Signatories: [✓] M. Aiston (Director) [] G Dresser (Director)

For & on behalf of Dunelm Testing Ltd

Page: 2 of 2

Test Report:	Determination of California Bearing Ratio (CBR) BS 1377: Part 4: 1990 clause 7			Report Date:	10.12.2020
Client:	Dunelm Geo	otechnical & Environmental	Lab ref: Client ref:	D10208-14892 WS25	
Site:	Gartree 2 G	artree	Date tested:	09.12.2020	
			Test conducted by:	AG	
Sample description: Clay					
Test location:	BH WS25 0.5m		Surcharge (kg):	12kg	
Variation from standard method:		None	Test depth (m):	-	
Method of sample preparation:		BS 1377-1:1990	Soaking details:	Not soaked	
>20mm present:	No				

Test Results

Comments: Moisture content carried out in accordance with BS 1377: Part 2: 1990 clause 3.2 Average CBR N/A

Signed:

Authorised Signatories: [✓] M. Aiston (Director) [] G Dresser (Director)

For & on behalf of Dunelm Testing Ltd

Page: 2 of 2

Test Report:	Determination of California Bearing Ratio (CBR) BS 1377: Part 4: 1990 clause 7			Report Date:	10.12.2020
Client:	Dunelm Geo	otechnical & Environmental	Lab ref: Client ref:	D10208-14892 WS25	
Site:	Gartree 2 G	artree	Date tested:	09.12.2020	
			Test conducted by:	AG	
Sample description:	description: Clay				
Test location:	BH WS25 0.5m		Surcharge (kg):	12kg	
Variation from standard method:		None	Test depth (m):	0.5m	
Method of sample preparation:		BS 1377-1:1990	Soaking details:	Not soaked	
>20mm present:	No				

Test Results

Comments: Moisture content carried out in accordance with BS 1377: Part 2: 1990 clause 3.2

Signed:

Authorised Signatories: [✓] M. Aiston (Directo [] G Dresser (Director)

For & on behalf of Dunelm Testing Ltd

Page: 1 of 2

Unit 5E, Edwardson Road, Meadowfield, Durham, DH7 8RL

Test Report:	Determination BS 1377: Part 2	of Liquid Limit, Plastic Limit & Pl 2: 1990	asticity Index	Report Date: 10.12.2020
Client:	Dunelm Geoteo	chnical & Environmental Ltd	Lab ref:	D10208-14877-14892
			Client ref:	D10208
			Date sampled:	12.11.2020
Site:	Gartree 2 Gartr	ree	Sampled by:	DGE
			Date received:	01.12.2020
Sample location:	See below			
Material:	CLAY		Date test completed:	09.12.2020
Source of material:	Site Arisings		Test conducted by:	AG/WB
Test Method:	Clause 4.4			
Variation from standar	d method:	None		
Method of sample prep	aration:	BS 1377-1:1990		
Tested after Material >42	25µm washed			

Test Results

Test Ref/ Location	Liquid Limit (%)	Plastic Limit (%)	Plasticity Index (%)	Moisture Content (%)	Plasticity Class	Material Passing 425µm (%)
BH WS01 0.5m 14877	62	25	37	29	СН	100
BH WS02 0.8m 14878	57	27	28	34	СН	99
BH WS07 0.5m 14881	54	23	32	24	СН	100
BH WS10 0.5m 14883	44	20	24	28	CI	100
BH WS11 0.5m 14884	56	24	32	33	СН	100
BH WS12 1.5m 14885	62	25	38	25	СН	100
BH WS15 0.5m 14886	56	27	28	27	СН	99
BH WS18 0.5m 14888	55	23	32	23	СН	100
BH WS20 1.1m 14889	44	20	24	20	CI	100
BH WS21 0.5m 14890	56	24	32	24	СН	100
BH WS23 1.5m 14891	62	25	38	24	СН	100
BH WS25 0.5m 14892	54	24	30	24	CU	100

Comments:

Authorised Signatories: [✓] M. Aiston (Director) [] G. Dresser (Director)

Page: 1 of 1

Dunelm Testing Limited registered in England & Wales. Company Registration No. .04330408 Tel (0191) 349 9210 www.dunelmtesting.co.uk

Signed:

For & on behalf of Dunelm Testing Ltd

Certificate Number 20-24613

Client Dunelm Testing Ltd Unit 5e Edwardson Road Meadowfield Durham TS5 6HA

- *Our Reference* 20-24613
- *Client Reference* D20208/01
 - Order No DT0320
 - Contract Title Gartree 2 GARTREE
 - Description 10 Soil samples.
 - Date Received 02-Dec-20
 - Date Started 02-Dec-20
- Date Completed 07-Dec-20
- Test Procedures Identified by prefix DETSn (details on request).
 - *Notes* Opinions and interpretations are outside the laboratory's scope of ISO 17025 accreditation. This certificate is issued in accordance with the accreditation requirements of the United Kingdom Accreditation Service. The results reported herein relate only to the material supplied to the laboratory. This certificate shall not be reproduced except in full, without the prior written approval of the laboratory.

Approved By

your

Adam Fenwick Contracts Manager

07-Dec-20

Summary of Chemical Analysis

Soil Samples

Our Ref 20-24613 Client Ref D20208/01 Contract Title Gartree 2 GARTREE

			Lab No	1770445	1770446	1770447	1770448	1770449	1770450	1770451	1770452	1770453	1770454
		.Sa	ample ID	WS01	WS03	WS06	WS07	WS09	WS15	WS16	WS20	WS23	WS25
			Depth	0.50	0.70	0.60	0.50	0.60	0.50	0.50	1.10	1.50	0.50
		(Other ID	14877	14879	14880	14881	14882	14886	14887	14889	14891	14892
		Sam	ple Type	SOIL									
		Sampl	ing Date	30/11/2020	30/11/2020	30/11/2020	30/11/2020	30/11/2020	30/11/2020	30/11/2020	30/11/2020	30/11/2020	30/11/2020
		Sampli	ing Time	n/s									
Test	Method	LOD	Units										
Inorganics													
рН	DETSC 2008#		рН	6.0	7.3	6.7	6.4	6.9	5.0	6.8	7.1	7.3	6.9
Sulphate Aqueous Extract as SO4	DETSC 2076#	10	mg/l	110	37	52	22	87	46	39	19	31	32
Sulphur as S, Total	DETSC 2320	0.01	%	0.03	0.02	0.03	0.02	0.06	0.04	0.01	0.02	0.01	0.04
Sulphate as SO4, Total	DETSC 2321#	0.01	%	0.06	0.04	0.06	0.06	0.18	0.11	0.03	0.05	0.02	0.10

Information in Support of the Analytical Results

Our Ref 20-24613 Client Ref D20208/01 Contract Gartree 2 GARTREE

Containers Received & Deviating Samples

				Holding time	Inappropriate
		Date		exceeded for	container for
Lab No	Sample ID	Sampled	Containers Received	tests	tests
1770445	WS01 0.50 SOIL	30/11/20	GJ 250ml, PT 500ml		
1770446	WS03 0.70 SOIL	30/11/20	GJ 250ml, PT 500ml		
1770447	WS06 0.60 SOIL	30/11/20	GJ 250ml, PT 500ml		
1770448	WS07 0.50 SOIL	30/11/20	GJ 250ml, PT 500ml		
1770449	WS09 0.60 SOIL	30/11/20	GJ 250ml, PT 500ml		
1770450	WS15 0.50 SOIL	30/11/20	GJ 250ml, PT 500ml		
1770451	WS16 0.50 SOIL	30/11/20	GJ 250ml, PT 500ml		
1770452	WS20 1.10 SOIL	30/11/20	GJ 250ml, PT 500ml		
1770453	WS23 1.50 SOIL	30/11/20	GJ 250ml, PT 500ml		
1770454	WS25 0.50 SOIL	30/11/20	GJ 250ml, PT 500ml		
Kev: G-Glass	s P-Plastic J-Jar T-Tub				

DETS cannot be held responsible for the integrity of samples received whereby the laboratory did not undertake the sampling. In this instance samples received may be deviating. Deviating Sample criteria are based on British and International standards and laboratory trials in conjunction with the UKAS note 'Guidance on Deviating Samples'. All samples received are listed above. However, those samples that have additional comments in relation to hold time, inappropriate containers etc are deviating due to the reasons stated. This means that the analysis is accredited where applicable, but results may be compromised due to sample deviations. If no sampled date (soils) or date+time (waters) has been supplied then samples are deviating. However, if you are able to supply a sampled date (and time for waters) this will prevent samples being reported as deviating where specific hold times are not exceeded and where the container supplied is suitable.

Soil Analysis Notes

Inorganic soil analysis was carried out on a dried sample, crushed to pass a 425μm sieve, in accordance with BS1377. Organic soil analysis was carried out on an 'as received' sample. Organics results are corrected for moisture and expressed on a dry weight basis. The Loss on Drying, used to express organics analysis on an air dried basis, is carried out at a temperature of 28°C +/-2°C.

Disposal

From the issue date of this test certificate, samples will be held for the following times prior to disposal :-Soils - 1 month, Liquids - 2 weeks, Asbestos (test portion) - 6 months

End of Report

		Project: D1	.0208					
		Job Numbe	er: Gartree 2 G	artree				
		Section : -				1		
Cor	e Log	Core Refer	ence : Core 1					TESTING
					Asphalt Core	Log		
			Layer			Aggr	regate	
Number	Top (mm)	Bottom (mm)	Thickness (mm)	Interface	Material	Max Size (mm)	Туре	Comments
1	0	15	15	poor bond	6mm surface course	6		Sound no cracks or voids
2	15	55	40	no bond	20mm binder course	30		disintegrated, small part that is intact has large voids
3	55	230	175	no bond	Concrete	20		Sound, less than 1% small voids, underlain by dolomite grav
Pavemer	nt Conditic	on : Trafficke	ed					·
Date Cor	ed:	12.11.20						
Date Log	ged	16.11.20						
Logged b	by:	NY					and the seal	A CONTRACTOR OF THE OWNER OWNER OF THE OWNER OWN
						CORE F	-	

e Log	Job Numbe Section : - Core Refer	er: Gartree 2 G	artree		1		
e Log	Section : - Core Refer						
e Log	Core Refer						
		ence : Core 2	<u>)</u>				TESTING
				Asphalt Core	Log		
		Layer			Aggr	egate	
Top (mm)	Bottom (mm)	Thickness (mm)	Interface	Material	Max Size (mm)	Туре	Comments
0	20	20	poor bond	6mm surface course	6		Sound no cracks or voids
20	60	40	no bond	20mm binder course	25		disintegrated
60	215	155	no bond	Concrete	20		Sound, less than 1% small voids, underlain by dolomite grave
t Conditio	n : Trafficke	ed					
ed:	12.11.20						
ged	16.11.20						
y:	NY					FREE	
Ву	GD			A States	12 alla		
					ORE R2 10208 AVEN GART 6-11-20	2000	
	0 20 60 Conditio d: ed : By	0 20 20 60 60 215 Condition : Trafficke d: 12.11.20 ed 16.11.20 : NY By GD	0 20 20 20 60 40 60 215 155 Condition : Trafficked d: 12.11.20 ed 16.11.20 : NY By GD	O 20 20 poor bond 20 60 40 no bond 60 215 155 no bond 60 215 155 no bond Condition : Trafficked d: 12.11.20 ed 16.11.20 : NY By GD	0 20 20 poor bond 6mm surface course 20 60 40 no bond 20mm binder course 60 215 155 no bond Concrete Condition : Trafficked d: 12.11.20 ed 16.11.20 . By GD GD .	Operation Description Matchesic Matchesic	Operation December (mm) December (mm) Processor Processor

		Project: D1	.0208					
		Job Numbe	er: Gartree 2 G	artree		1		
		Section : -						
Core	e Log	Core Refer	ence : Core 3	}				TESTING
		•			Asphalt Core	Log		
			Layer			Aggr	egate	
Number	Top (mm)	Bottom (mm)	Thickness (mm)	Interface	Material	Max Size (mm)	Туре	Comments
1	0	10	20	poor bond	6mm surface course	6		Sound no cracks or voids
0	10	50	40	no hond	20mm binder source	20		divinde worke d
2	IU	50	40			20		
3	50	285	235	no bond	Concrete	20		Horizontal crack at 250mm less than 1% small voids, underlain by dolomite gravel
-								
Pavemen	t Conditio	n : Trafficke	ed					
Pavemen	t Conditio	n : Trafficke	d			<u> </u>		
Pavemen Date Core	t Conditio ed:	n : Trafficke 12.11.20	d					
Pavemen Date Core Date Log	t Conditio ed: ged	n : Trafficke 12.11.20 16.11.20	id					
Pavemen Date Corr Date Log Logged b	t Conditio ed: ged y:	n : Trafficke 12.11.20 16.11.20 NY	vd					

		Project: D1	0208						
		lob Numbe	r: Gartree 2 G	artree					
		Section : -				-			
Cor	e Log	Core Refer	ence : Core 4	4				TESTING	
					Asphalt Core	Log			
			Layer		•	Aggre	egate	Comments	
								1	
Number	Top (mm)	Bottom (mm)	Thickness (mm)	Interface	Material	Max Size (mm)	Туре	Comments	
1	0	5	5	poor bond	6mm surface course	6		thin layer too thin to describe	
2	5	185	180	no bond	Concrete	20		>1% small voids, steel rebar at 20mm, underlain by unkow fill	
			1						
Pavemer	it Conditio	n : Trafficke	٠d						
Pavemer	it Conditio	n : Trafficke	ed						
Pavemer Date Cor	it Conditio ed:	n : Trafficke 12.11.20	2:d						
Pavemer Date Cor Date Log	it Conditio ed: ged	n : Trafficke 12.11.20 16.11.20	2d						
Pavemen Date Cor Date Log Logged b	it Conditio ed: ged y:	n : Trafficke 12.11.20 16.11.20 NY	2d						
Pavemer Date Cor Date Log .ogged b Reportec	it Conditio ed: ged y: I By	n : Trafficke 12.11.20 16.11.20 NY GD	2:d		0				
Pavemen Date Cor Date Log Logged b Reportec	ed: ged y: I By	n : Trafficke 12.11.20 16.11.20 NY GD	ed						
Pavemen Date Cor Date Log Logged b Reportec	it Conditio ed: ged y: I By	n : Trafficke 12.11.20 16.11.20 NY GD	ed						
Pavemer Date Cor Date Log .ogged b Reportec	ed: ged y: I By	n : Trafficke 12.11.20 16.11.20 NY GD	ed					9. 4 6. 7. 6. 9. W	
Pavemen Date Cor Date Log Logged b Reportec	ed: ged y: I By	n : Trafficke 12.11.20 16.11.20 NY GD	ed					9. 9 97 99 99 99	
Pavemer Date Cor Date Log Ogged b Reported	ed: ged y: I By	n : Trafficke 12.11.20 16.11.20 NY GD	ed				0000 000000000000000000000000000000000	9.9 075 19.992	
Pavemen Date Cor Date Log Logged b Reportec	ed: ged y: I By	n : Trafficke 12.11.20 16.11.20 NY GD	ed			Core \$	о и е п е его о о 3 4 3	x	
Pavemen Date Cor Date Log Logged b Reported	ed: ged y: I By	n : Trafficke 12.11.20 16.11.20 NY GD	ed			Core 9	2000 0 000 0 0 0 0 0 0 0 0 0 0 0 0 0 0	9 0 7 0 7 X	
Pavemer Date Cor Date Log Logged b Reported	it Conditio ed: ged y: I By	n : Trafficke 12.11.20 16.11.20 NY GD	ed			CORE 8 D10208 PANEN GA	2000 000000000000000000000000000000000	9. 4 4 77 40 19.244	
Pavemen Date Cor Date Log Logged b Reportec	ed: ged y: I By	n : Trafficke 12.11.20 16.11.20 NY GD	ed			CORE 8 D10208 PANEN 64 IL-11-20	2000 44 3 ARTREE		

		Project: D1	L0208					
		Job Numbe	er: Gartree 2 G	artree		1		
		Section : -				1		
Cor	e Log	Core Refer	ence : Core 5)				TESTING
					Asphalt Core	Log		
			Layer			Aggr	egate	
Number	Top (mm)	Bottom (mm)	Thickness (mm)	Interface	Material	Max Size (mm)	Туре	Comments
1	0	20	20	nearband	10mm ourfood course	10		Sound no progle or upide
	0	20	20	poor bond	10mm surface course	10		Sound no cracks or voids
2	20	60	40	no bond	20mm binder course	20		disintegrated
3	60	215	155	no bond	Concrete	20		Generally sound, less than 1% small voids, horizontal crac 10mm from top of concrete around the core
								Underlying material unknown
Pavemer	nt Conditio	on : Trafficke	ed					•
Pavemer	nt Conditio	on : Trafficke	ed					·
Pavemer Date Cor	nt Conditio	on : Trafficke 12.11.20	ed					
Pavemer Date Cor Date Log	red: ged	on : Trafficke 12.11.20 16.11.20	ed					
Pavemer Date Cor Date Log Logged b	red: ged y:	on : Trafficke 12.11.20 16.11.20 NY	ed					
Pavemer Date Cor Date Log Logged b Reported	nt Conditio red: gged by: d By	n : Trafficke 12.11.20 16.11.20 NY GD	2d		6.			
Pavemer Date Cor Date Log Logged b Reportec	nt Conditio red: gged by: d By	n : Trafficke 12.11.20 16.11.20 NY GD	ed					
Pavemer Date Cor Date Log Logged b Reportec	nt Conditio red: gged by: d By	n : Trafficke 12.11.20 16.11.20 NY GD	2d					
Pavemer Date Cor Date Log Logged b Reportec	nt Conditio red: ged by: d By	n : Trafficke 12.11.20 16.11.20 NY GD	ed					
Pavemer Date Cor Date Log Logged b Reportec	nt Conditio red: gged by: d By	n : Trafficke 12.11.20 16.11.20 NY GD	2d			DRE R		
Pavemer Date Cor Date Log Logged b Reportec	nt Conditio red: gged by: d By	n : Trafficke 12.11.20 16.11.20 NY GD	ed			ORE RU		
Pavemer Date Cor Date Log Logged b Reportec	nt Conditio red: gged by: d By	n : Trafficke 12.11.20 16.11.20 NY GD	2d			ORE R 10208	an 10 40 9200 10 10 10 10	
Pavemer Date Cor Date Log Logged b Reportec	nt Conditio red: gged by: d By	n : Trafficke 12.11.20 16.11.20 NY GD	ed			ORE R 10208	ы по не реже на по не 5 Тессе	
Pavemer Date Cor Date Log Logged b Reportec	nt Conditio red: gged by: d By	n : Trafficke 12.11.20 16.11.20 NY GD	2d			ORE RY IOZOB AVEN GAR	5	

		Project: D1	.0208					
		Job Numbe	er: Gartree 2 G	artree				
		Section : -						
Cor	e Log	Core Refer	ence : Core 6	5		1		TESTING
					Asphalt Core	Log		<u> </u>
	-		Layer			Aggr	regate	
Number	Top (mm)	Bottom (mm)	Thickness (mm)	Interface	Material	Max Size (mm)	Type	Comments
							.,pc	
1	0	10	10	poor bond	6mm surface course	6		Sound no cracks or voids
2	10	50	40	no bond	20mm binder course	20		disintegrated
	10	50	-0	no bond		20		ulaintegrateu
3	50	230	180	no bond	Concrete	20		Sound, less than 1% small voids
								Underlying material unknown
Pavemer	nt Conditic	on : Trafficke	ed					
Date Cor	.ed.	12 11 20						
Date Log	ged	16.11.20						
Logged k)y:	NY			- Carlos	AN ROAD		
Reported	d By	GD			Sec. Co			in the second
	-					The second is	and the second	
						70 80 90 100 10 20 30 40 5	io so 70 so 90.200 10 20 30 4	so
					Co	RE RL		
					DIO	208		
					RAVE	N GARTI	LEE	and the second second
					16.1	. 20	William Sta	

		Project: D1	10208					
		Job Numbe	er: Gartree 2 G	artree		_		
		Section : -						
Cor	e Log	Core Refer	ence : Core 7	1				TESTING
					Asphalt Core	Log		
			Layer			Aggr	egate	
Number	Top (mm)	Bottom (mm)	Thickness (mm)	Interface	Material	Max Size (mm)	Туре	Comments
1	0	20	20	poor bond	6mm surface course	6		Sound no cracks or voids
2	20	60	40	no bond	20mm binder course	20		Top 35mm intact, poor compaction (voids) lower section disintegrated
3	40	285	225	no bond	Concrete	20		Large voids suggesting poor compaction, cracked at 250mr bgl, possibly by corer, further cracks at 270mm (3 pieces)
								Underlying material unknown
Pavemer	nt Conditio	on : Trafficke	ed					
		1						
Date Cor	red:	12.11.20						
Date Log	ged	16.11.20				· · · · · · · · · · · · · · · · · · ·	Dan 12	
Logged k	by:	NY			CONS.	10 9	A 6 2	1: 1
Reported	d By	GD				No Cont	T ALS !!	
								3 aller
					mill 20 30 40 50 60	70 80 90 100 10 20 30 40 50 f	ac 70 80 90 200 10 20 30 40	eu 70 80 90 10 20 30 40 50 80 70 80 90 4
					Contraction of the second			
					C	ORE KI	1	
					21	2209		
						0/00		
					DI	02-0		an in the second se
					DI Ra	NEN GART	LEE	
					PA	VEN GART	LEE	
					P.A.	VEN GART	LEE	

		Proiect: D1	.0208					
		Job Numbe	er: Gartree 2 G	artree				
		Section : -				1		
Cor	e Log	Core Refer	ence : Core 8	3				TESTING
					Asphalt Core	Log		
			Layer	Aggregate				
Number	Top (mm)	Bottom (mm)	Thickness (mm)	Interface	Material	Max Size (mm)	Туре	Comments
1	0	10	10	poor bond	6mm surface course	6		Sound no cracks or voids
2	10	50	40	no bond	20mm binder course	20		disintegrated
з	50	230	180	no bond	Concrete	20		Solit vertically throughout the core less than 1% small your
	50	200	100	no bond	Ouncrete	20		
								Underlving material unknown
Pavemen	nt Conditio	n : Trafficke	d					
Date Cor	ed:	12.11.20						
Date Log	ged	16.11.20				F.O.	1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1	
Logged b	y:	NY				The last		
Reported	l By	GD				X		
						10	Star Star	
					Law10 20 30	40 50 60 70 80 90 100 10	20 30 40 50 60 70 80 90 2	30 to 20 30 40 eo 10 e
						CARE	R8	
						CURC		
						D1020	18 .	
						0	GARTOG	6
						KANEN	GRETEE	
						16.11.2	٥	
			L					

Appendix G

Gas and Groundwater Monitoring Results

PROJECT NUMBER	D10208	I			_									
CONTRACT NAME	Gartree 2, Gartree													
	DATE &		r	NOTES										
DAY	MONTH	YEAR TIME (Start) TIME (Finish) falling NAME GA5000												
11	12	2020	10:15	11:30:00		laning		SERIAL NUMBER	G505312					
			AMBIENT READIN	GS				LAST CALIBRITATION	11/12/2020		v	ISIT NO		
O2 (% v/v)	20.9	CO2 (% v/v)	0.1	CH4 (% v/v)	0	PID reading (ppm)		NAME		1	OF		6	
	ATMOSPHERIC PRESSURI	E (mbar)		START	973	FINISH	974	SERIAL NUMBER		WEATHER CONDITIONS			GROUND CONDITIONS	
	AIR TEMPERATURE	°C		START	8	FINISH	8	LAST CALIBRITATION		Foggy			Saturated	

BH No.	Pipe Diameter	Flow R	ate (I/hr)	Relative		CH ₄ (%v/v)		CO ₂ (%v/v)	O ₂ (%v/v)	PID (ppm)	H ₂ S (ppm)	CO (ppm)	SWL	Base of pipe	Remarks
		Peak	Steady	mbar	Peak	Steady	Peak	Steady	Peak	Steady	Peak	Low	Range	Range	(m bgl)	(m bgl)	
WS2	5CM	0.10	0.10	0.34	ND	ND	1.50	1.50	19.00	19.00	NA	NA	ND	ND	0.59	3.98	
WS11	5CM	4.30	1.30	6.64	ND	ND	1.60	0.90	18.20	17.20	NA	NA	1.00	2.00	0.36	3.13	
WS12	5CM	6.70	4.20	20.34	ND	ND	2.00	2.00	15.40	15.40	NA	NA	1.00	1.00	1.12	3.10	
WS14	5CM	0.20	0.20	0.41	ND	ND	1.90	1.90	4.90	4.90	NA	NA	1.00	1.00	DRY	1.73	
WS26	5CM	6.80	5.10	15.27	ND	ND	2.40	2.30	3.30	2.90	NA	NA	ND	1.00	1.15	4.25	
		I	1					<u> </u>			1			I			

PROJECT NUMBER	D10208	٦											
CONTRACT NAME	Gartree 2, Gartree												
								-					
	DATE	& TIME				REGIONAL TREND		INSTRUMEN	T DETAILS			NOTES	
DAY	MONTH	YEAR	TIME (Start)	TIME (Finish)		rising		NAME	GA5000				
23	12	2020	11:30	13:00:00		Tising		SERIAL NUMBER	GA500672				
			MBIENT READIN	GS				LAST CALIBRITATION	23/06/2020		v	ISIT NO	
O2 (% v/v)	20.9	CO2 (% v/v)	0	CH4 (% v/v)	0	PID reading (ppm)		NAME		2	OF		6
	ATMOSPHERIC PRESSUR	RE (mbar)		START	993	FINISH	993	SERIAL NUMBER		WEATHER CONDITIONS			GROUND CONDITIONS
	AIR TEMPERATUR	E °C		START	8	FINISH	8	LAST CALIBRITATION		HEAVY RAIN			SATURATED MUDDY

BH No.	Pipe Diameter	Flow R	ate (l/hr)	Relative		CH ₄ (%v/v)		CO ₂ (%v/v)	O ₂ (%v	/v)	PID (ppm)	H ₂ S (ppm)	CO (ppm)	SWL	Base of pipe	Remarks
		Peak	Steady	mbar	Peak	Steady	Peak	Steady	Peak	Steady	Peak	Low	Range	Range	(m bgl)	(m bgl)	
WS2	5CM	0.10	0.10	0.21	ND	ND	0.90	0.90	19.70	19.70	NA	NA	ND	ND	0.29	3.98	
WS11	5CM	3.00	1.00	-3.85	ND	ND	1.00	1.00	18.90	18.90	NA	NA	ND	1.00	0.28	3.12	
WS12	5CM	4.50	4.00	7.53	ND	ND	0.10	0.10	19.50	19.50	NA	NA	ND	ND	1.07	3.11	
WS14	5CM	6.00	4.60	0.39	ND	ND	1.70	1.70	16.10	16.10	NA	NA	ND	1.00	1.48	1.73	
WS26	NR	NR	NR	NR	NR	NR	NR	NR	NR	NR	NA	NA	NR	NR	NR	NR	Unable to locate.
L	I	I	I	I	I						I	I	1				

PROJECT NUMBER	D10208	7											
CONTRACT NAME	Gartree 2, Gartree												
	NOTES												
DAY	DAY MONTH YEAR TIME (Start) TIME (Finish) falling NAME GA5000												
8	1	2021	11:00	12:00:00		lannig		SERIAL NUMBER	G501536				
			AMBIENT READIN	IGS				LAST CALIBRITATION	08/01/21		VISIT NO		
O2 (% v/v)	20.9	CO2 (% v/v)	0	CH4 (% v/v)	0	PID reading (ppm)		NAME		3	OF	6	
	ATMOSPHERIC PRESSUR	tE (mbar)		START	1008	FINISH	1007	SERIAL NUMBER		WEATHER CONDITIONS		GROUND CONDITIONS	
	AIR TEMPERATURE	°C		START	0	FINISH	0	LAST CALIBRITATION		Mist		Saturated	

BH No.	Pipe Diameter	Flow Ra	ate (l/hr)	Relative pressure		CH4 (%v/v)		CO ₂ (%v/v)	O ₂ (%v/v))	PID (ppm)	H ₂ S (ppm)	CO (ppm)	SWL	Base of pipe	Remarks
		Peak	Steady	mbar	Peak	Steady	Peak	Steady	Peak	Steady	Peak	Low	Range	Range	(m bgl)	(m bgl)	
WS2	50mm	0.10	0.10	-0.14	ND	ND	1.90	1.80	19.90	19.90	NA	NA	ND	ND	0.24	3.98	
WS11	50mm	0.10	0.10	0.79	ND	ND	1.00	0.70	20.20	20.20	NA	NA	ND	ND	0.60	3.11	
WS12	50mm	-0.30	-0.30	0.41	ND	ND	3.40	3.40	15.10	15.10	NA	NA	ND	ND	0.91	3.11	
WS14	50mm	0.10	0.10	-0.15	ND	ND	3.20	2.10	18.30	18.70	NA	NA	ND	ND	1.42	1.74	
WS26	50mm	0.10	0.10	-0.07	ND	ND	0.40	0.30	21.00	21.00	NA	NA	ND	ND	0.34	4.26	

PROJECT NUMBER D10208 CONTRACT NAME Gartree 2, Gartree

	DATE 8	TIME				REGIONAL TREND		INSTRUMENT	DETAILS			NOTES
DAY	MONTH	YEAR	TIME (Start)	TIME (Finish)		falling		NAME	GA5000			
02	02	2021	08:35	09:05:00		rannig		SERIAL NUMBER	G505312			
	AMBIENT READINGS							LAST CALIBRITATION	17/11/2020			VISIT NO
O2 (% v/v)	20.9	CO2 (% v/v)	0.1	CH4 (% v/v)	0	PID reading (ppm)	ID reading (ppm) NAM			4	OF	6
A	ATMOSPHERIC PRESSURE (mbar)			START	981	FINISH	981	SERIAL NUMBER		WEATHER CONDITIONS		GROUND CONDITIONS
	AIR TEMPERATURE °C			START	5	FINISH	5	LAST CALIBRITATION				
									,			

BH No.	Pipe Diameter	Flow R	ate (I/hr)	Relative pressure		CH ₄ (%v/v)		CO ₂ (%v/v)	O ₂ (%v/v)	PID (ppm)	H ₂ S (ppm)	CO (ppm)	SWL	Base of pipe	Remarks
		Peak	Steady	mbar	Peak	Steady	Peak	Steady	Peak	Steady	Peak	Low	Range	Range	(m bgl)	(m bgl)	
WS2	5CM	ND	ND	-0.72	ND	ND	0.70	0.60	18.20	16.80	NA	NA	1.00	ND	0.27	3.98	gas reading taken without bung - water level too high
WS11	5CM	ND	ND	-0.64	ND	ND	0.10	0.10	18.70	18.60	NA	NA	1.00	ND	0.28	3.13	gas reading taken without bung - water level too high
WS12	5CM	2.20	1.70	4.24	ND	ND	0.20	0.10	16.50	16.50	NA	NA	1.00	1.00	0.86	3.10	
WS14	5CM	ND	ND	-0.64	ND	ND	2.00	1.90	19.60	19.30	NA	NA	1.00	ND	0.95	1.73	gas reading taken without bung - water level too high
WS26	5CM	ND	ND	-0.67	ND	ND	0.20	0.10	19.90	19.90	NA	NA	1.00	ND	0.79	4.25	
									I					1			
									I					1			

PROJECT NUMBER	D10208	1			_							
CONTRACT NAME	Gartree 2, Gartree											
	DATE	& TIME				REGIONAL TREND		INSTRUMEN	T DETAILS		NOTES	
DAY	MONTH	YEAR	TIME (Start)	TIME (Finish)		rising		NAME	GA5000			
5	2	2021	10:30	12:00:00	I	lising		SERIAL NUMBER	G501536			
			AMBIENT READIN	IGS				LAST CALIBRITATION	05/02/21		VISIT NO	
O2 (% v/v)	20.9	CO2 (% v/v)	0	CH4 (% v/v)	0	PID reading (ppm)		NAME		5	OF	6
	ATMOSPHERIC PRESSUR	E (mbar)		START	1008	FINISH	1008	SERIAL NUMBER		WEATHER CONDITIONS		GROUND CONDITIONS
	AIR TEMPERATURE	°C		START	6	FINISH	6	LAST CALIBRITATION		Cloudy		Saturated

BH No.	Pipe Diameter	Flow Ra	ate (l/hr)	Relative pressure		CH4 (%v/v)		CO ₂ (%v/v)	O ₂ (%v/	v)	PID (ppm)	H ₂ S (ppm)	CO (ppm)	SWL	Base of pipe	Remarks
		Peak	Steady	mbar	Peak	Steady	Peak	Steady	Peak	Steady	Peak	Low	Range	Range	(m bgi)	(m bgl)	
WS2	50mm	-0.10	-0.10	0.36	ND	ND	1.80	1.80	19.80	19.80	NA	NA	ND	ND	0.56	3.98	
WS11	50mm	0.00	0.00	0.07	ND	ND	0.20	0.20	20.40	20.40	NA	NA	ND	ND	0.31	3.11	
WS12	50mm	0.00	0.00	0.45	ND	ND	2.20	2.20	19.70	19.70	NA	NA	ND	ND	0.91	3.11	
WS14	50mm	-0.10	-0.10	0.24	ND	ND	0.20	0.10	20.40	20.50	NA	NA	ND	ND	0.34	1.74	
WS26	50mm	-0.10	-0.10	0.10	ND	ND	1.10	1.10	20.30	20.30	NA	NA	ND	ND	0.86	4.26	

PROJECT NUMBER CONTRACT NAME

	DATE 8	TIME				REGIONAL TREND		INSTRUMENT	DETAILS			NOTES
DAY	MONTH	YEAR	TIME (Start)	TIME (Finish)		falling		NAME	GA5000			
19	02	2021	07:40	12:00:00		rannig	SERIA	SERIAL NUMBER	G505312			
	AMBIENT READINGS						LAST CALIBRITATION	17/11/2020			VISIT NO	
O2 (% v/v)	20.9	CO2 (% v/v)	0.1	CH4 (% v/v)	0	PID reading (ppm)	reading (ppm) NAME			6	OF	6
A	ATMOSPHERIC PRESSURE (mbar)			START	996	FINISH	996	SERIAL NUMBER		WEATHER CONDITIONS		GROUND CONDITIONS
	AIR TEMPERATURE °C START				8	FINISH	8	LAST CALIBRITATION				

BH No.	Pipe Diameter	Flow R	ate (I/hr)	Relative pressure		CH4 (%v/v)		CO ₂ (%v/v)	O ₂ (%v/v)	PID (ppm)	H ₂ S (ppm)	CO (ppm)	SWL	Base of pipe	Remarks
		Peak	Steady	mbar	Peak	Steady	Peak	Steady	Peak	Steady	Peak	Low	Range	Range	(m bgl)	(m bgl)	
WS2	50mm	ND	ND	-0.10	ND	ND	0.60	0.60	21.80	21.80	NA	NA	ND	ND	0.53	3.98	
WS11	50mm	ND	ND	-0.03	ND	ND	0.10	0.10	20.90	20.90	NA	NA	ND	ND	0.40	3.13	gas reading taken without bung - water level too high
WS12	50mm	-0.30	-0.30	-3.55	ND	ND	2.80	2.80	20.10	20.10	NA	NA	ND	1.00	0.89	3.10	
WS14	50mm	ND	ND	0.09	ND	ND	3.30	3.30	19.90	19.90	NA	NA	ND	ND	0.91	1.73	
WS26	50mm	ND	ND	0.03	ND	ND	0.20	0.20	21.50	21.50	NA	NA	ND	ND	1.18	4.25	gas tap open on arrival
															1		

Appendix H

Dunelm Conditions of Offer, Notes on Limitations & Basis for Contract

Dunelm Conditions of Offer, Notes on Limitations & Basis for Contract

These conditions accompany our tender and supercede any previous conditions issued. The firm will prepare a report solely for the use of the Client (the party invoiced) and its agent(s). No reliance should be placed on the contents of this report, in whole or in part by 3rd parties. The report, its content and format and associated data are copyright, and the property of the firm. Photocopying of part or all of the contents, transfer or reproduction of any kind is forbidden without written permission from the firm. A charge may be levied against such approval, the same to be made at the discretion of the firm.

Site investigation is a process of sampling. The scope and size of an investigation may be considered proportional to levels of confidence regarding the ground and groundwater conditions. The exploratory holes undertaken investigate only a small volume of the ground in relation to the overall size of the site, and can only provide a general indication of site conditions. The opinions provided and recommendations given in this report are based on the ground conditions as encountered within each of the exploratory holes. There may be different ground conditions elsewhere on the site which have not been identified by this investigation and which therefore have not been taken into account in this report. Reports are generally subject to the comments of the local authority and Environment Agency. The comments made on groundwater conditions are based on observations made at the time that site work was carried out. It should be noted that mobile contamination, soil gas levels and groundwater levels may vary owing to seasonal, tidal and/or weather related effects. Unrecorded ancient mining may occur anywhere where seams that have been worked and influence the rock and soil above. Dissolution cavities can occur where gypsum or chalk is present. Rotary drilling is the recommended technique to prove the integrity of the rock.

Where the scope of the investigation is limited via access to information, time constraints, equipment limitations, testing, interpretation or by the client or his agents budgetary constraints, elements not set out in the proposal and excluded from the report are deemed to be omitted from the scope of the investigation.

The firm cannot be held liable and do not warrant, or otherwise guarantee the validity of information provided by third parties and subsequently used in our reports. The firm are not responsible for the action negligent or otherwise of subcontractors or third parties.

Desk studies are generally prepared in accordance with RICS guidelines. Environmental site investigations are generally undertaken as 'exploratory investigations' in accordance with the definitions provided in paragraph 5.2.7 of BS 10175:2011 +A2:2017 in order to confirm the conceptual assumptions, and in accordance with BS5930:2015. You are advised to familiarize yourself with the typical scope of such an investigation. No pumping of water will be undertaken unless a licence or facilities/equipment have been arranged by others.

Where the type, number or/and depth of exploratory hole is specified by others, the firm cannot and will not be responsible for any subsequent shortfall or inadequacy in data, and any consequent shortfall in interpretation of environmental and geotechnical aspects which may be required at a later date in order to facilitate the design of permanent or temporary works.

All information acquired by the firm in the course of investigation is the property of the firm, and, only also becomes the joint property of the Client only on the complete settlement of all invoices relating to the project. The firm reserves the right to use the information in commercial tendering and marketing, unless the Client expressly wishes otherwise in writing. The quoted rates do not include VAT, and payment terms are 30 days from dispatch of invoice from our offices. Quotes are subject to a site visit.

We have allowed for 1 mobilisation and normal working hours unless otherwise stated. The scope of the investigation may be reviewed following the desk study and/or fieldwork. We have not allowed for acquiring services information, and cannot be responsible for damage to underground services or pipes not shown to us or not clearly shown on plans. Costs incurred will be passed on to you, and in commissioning the firm, you understand and accept that you/your agent have a contractual relationship with the firm & you accept this. Our rates assume unobstructed, reasonably level and firm access to the exploratory positions and adequate clear working areas and headroom. We have priced on the basis that you or your client have the necessary permissions, wayleaves and approvals to access land. All boreholes and pits are backfilled with arisings except where gas monitoring pipes are installed with stopcock covers. Dunelm are not responsible for any uneven surfaces as a result of siteworks and rutting and backfilled excavations may require re-levelling and/or making good by others after fieldwork is complete. Dunelm have not allowed for subsequent reinstatement as a result of settlement. No price has been provided or requested for a return visit to remove pipework and covers. No price has been provided or requested for a return visit to remove pipework and covers. No price has been provided or requested for a return visit to remove pipework and covers. No price has been provided or requested for a return visit to remove pipework and covers. No price has been provided or requested for a return visit to remove pipework and covers. No price has been provided or requested for a return visit to remove pipework and covers. No price has been provided or requested for a return visit to remove pipework and covers. No price has been provided or requested for a return visit to remove pipework and covers. No price has been provided or requested for a return visit to remove pipework and covers. No price has been provided or requested f

We reserve the right to pursue full payment of the invoice prior to release of any information including reports. We advise you/your client that we may elect to pursue our statutory rights under late payment legislation, and will apply 8% to the base rate for unreasonably late payments. We will also apply the right to claim any associated legal costs incurred with recovery of late payments. The firm is exempt from the CIS Scheme. The firm offer to undertake work <u>only</u> in strict accordance with conditions covered by our current insurances, which are available for inspection. The company are not responsible for acts, negligent or otherwise of subcontractors and as a matter of policy cannot indemnify any other parties. Professional indemnity Insurance is limited to ten times the invoice net total except where stated otherwise by the firm, and we give notice that consequential loss as a direct or indirect result of the firm's activities or omission of the same are excluded.